-
随着功率型电力电子设备运行负荷的不断增加以及小型化集成化的发展趋势, 对电介质电容器提出了更高的要求, 其需具有高储能密度、快速充放电速度、易加工成型. 钛酸钡基无铅铁电陶瓷具有较高的介电常数的优点, 但耐击穿场强低, 而聚偏氟乙烯(PVDF)聚合物材料具有良好的柔韧性、击穿场强高、质量轻的优点, 但介电常数相对较低, 两者的储能密度均受到了限制. 为了获得高介电常数、高储能密度介质材料, 采用静电纺丝法制备了钛酸锶(SrTiO3)一维纳米纤维作为无机填料, 以聚偏氟乙烯(PVDF)为聚合物基体, 为了改善SrTiO3一维纳米纤维与PVDF聚合物基体之间的界面情况, 利用表面羟基化处理方法对SrTiO3一维纳米纤维进行表面改性, 辅以流延法制备了SrTiO3/PVDF复合材料, 研究了表面羟基化处理SrTiO3一维纳米纤维对复合材料储能性能的影响. 结果表明: 表面羟基化处理SrTiO3纳米纤维填料在PVDF聚合物中分散和结合情况良好, 复合材料具有良好的介电性能和耐击穿性能; 当表面羟基化处理SrTiO3一维纤维填料的填充量为2.5% (体积分数)时, 复合材料的储能密度达7.96 J/cm3.With the rapid development of the electronics industry, the dielectric materials with high energy storage density, fast charge and discharge speed, easy-to-process and easy-to-mold, and stable performance are urgently needed to meet the requirements for lightweight and miniaturization of electronic component equipment. Dielectric ceramics has a high dielectric constant, but low breakdown field strength. Polyvinylidene fluoride (PVDF) has the advantages of good flexibility, high breakdown field strength, and light weight, but its dielectric constant is low. Achieving the ability to tailor the interface between dielectric ceramics filler and PVDF polymer matrix is a key issue for realizing the desirable dielectric properties and high energy density in the nanocomposites. As a result, much effort has been made to prepare the polymer composites through the surface modification of the nanoparticles with high dielectric constant fillers dispersed in a matrix, with the hope of preparing composites containing the high dielectric constant of the ceramic fillers and the high breakdown strength of polymers. In this work, in order to obtain the high dielectric-constant and high-energy-storage-density dielectric ceramics, the electrospinning method is used to prepare the SrTiO3 one-dimensional nanofibers as the inorganic fillers and the casting method is adopted to prepare PVDF as the polymer matrix. To improve the interface between inorganic nanofiber fillers and PVDF matrix, the SrTiO3 nanofibers are modified by surface hydroxylation. The effects of suface hydroxylated SrTiO3 nanofibers on the dielectric properties and energy storage properties of PVDF composites are studied. The correlation between interface modification and energy storage performance of composites is investigated to reveal the mechanism of enhanced energy storage performance of SrTiO3 nanofibers/PVDF composites. The results show that the dispersion of surface-hydroxylating SrTiO3 nanofibers in PVDF polymer can be improved. The composites exhibit improved dielectric properties and enhanced breakdown strength. When the filling quantity of the surface-hydroxylating SrTiO3 nanofiber fillers is 2.5 vol%, the energy storage density of the composite reaches 7.96 J/cm3. Suface-hydroxylating SrTiO3 nanofibers exhibit excellent dispersion in the PVDF polymer matrix and strong interfacial adhesion with the matrix, leading the composites to possess excellent dielectric constant and energy storage performance. The surface hydroxylation of ceramic fillers can improve the energy storage performance of the composites.
-
Keywords:
- strontium titanate /
- energy storage property /
- nanofiber /
- surface modification
[1] Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar
[2] Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar
[3] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[4] Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar
[5] Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar
[6] Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar
[7] Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar
[8] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar
[9] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar
[10] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar
[11] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar
[12] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 65 188101Google Scholar
Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar
[13] Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar
[14] Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar
[15] Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar
[16] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar
[17] Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar
[18] Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar
[19] Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar
[20] Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar
[21] Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar
[22] Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar
[23] Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar
[24] Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar
[25] Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar
[26] Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar
[27] Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar
[28] 王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060
Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060
[29] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar
-
表 1 羟基化处理前后样品的晶体结构
Table 1. Crystal structure of the samples before and after hydroxylation.
样品 PDF卡片编号 晶相 空间群 晶格参数/nm ST NF 35-0734 立方相 Pm- 3m a = b = c = 0.3911 ST NF—OH 35-0734 立方相 Pm-3m a = b = c = 0.3915 表 2 前期文献报道的PVDF基复合材料的储能密度与本文实验结果比较
Table 2. Comparison of the energy storage density of PVDF-based composite materials reported in previous literatures and the experimental results in this paper.
-
[1] Wang Y, Wang L, Yuan Q, Niu Y, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar
[2] Luo H, Roscow J, Zhou X, Chen S, Han X, Zhou K, Zhang D, Bowen C R 2017 J. Mater. Chem. A 5 7091Google Scholar
[3] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[4] Zhu Y, Zhu Y, Huang X, Chen J, Li Q, He J, Jiang P 2019 Adv. Energy Mater. 9 1901826Google Scholar
[5] Luo H, Ma C, Zhou X, Chen S, Zhang D 2017 Macromolecules 50 5132Google Scholar
[6] Shen Z H, Wang J J, Jiang J Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Energy Mater. 8 1800509Google Scholar
[7] Zhang D, Zhou X, Roscow J, Zhou K, Wang L, Luo H, Bowen C R 2017 Sci. Rep. 7 45179Google Scholar
[8] Dang Z M, Yuan J K, Zha J W, Zhou T, Li S T, Hu G H 2012 Prog. Mate.r Sci. 57 660Google Scholar
[9] Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar
[10] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar
[11] 赵学童, 廖瑞金, 李建英, 王飞鹏 2015 64 127701Google Scholar
Zhao X T, Liao R J, Li J Y, Wang F P 2015 Acta Phys. Sin. 64 127701Google Scholar
[12] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲 2016 65 188101Google Scholar
Feng Q, Li M K, Tang H T, Wang X D, Gao Z M, Meng F L 2016 Acta Phys. Sin. 65 188101Google Scholar
[13] Song Y, Shen Y, Liu H Y, Lin Y H, Li M, Nan C W 2012 J. Mate.r Chem. 22 8063Google Scholar
[14] Song Y, Shen Y, Hu P H, Lin Y H, Li M, Nan C W 2012 Appl. Phys. Lett. 101 152904Google Scholar
[15] Xie L Y, Huang X Y, Wu C, Jiang P K 2011 J. Mater. Chem. 21 5897Google Scholar
[16] Xie L Y, Huang X Y, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. A 2 5244Google Scholar
[17] Thakur V K, Lin M F, Tan E J, Lee P S 2012 J. Mater. Chem. 22 5951Google Scholar
[18] Thakur V K, Tan E J, Lin M F, Lee P S 2011 Polym. Chem. 2 2000Google Scholar
[19] Thakur V K, Yan J, Lin M F, Zhi C Y, Golberg D, Bando Y, Sim R, Lee P S 2012 Polym. Chem. 3 962Google Scholar
[20] Wang X, Dai Y Y, Wang W M, Ren M M, Li B Y, Fan C, Liu X Y 2014 ACS Appl. Mater. Interfaces 6 16182Google Scholar
[21] Almadhoun M N, Bhansali U S, Alshareef H N 2012 J. Mater. Chem. 22 11196Google Scholar
[22] Yuan X P, Matsuyama Y, Chung T C M 2010 Macromolecules 43 4011Google Scholar
[23] Zhang Q P, Xia W M, Zhu Z G, Zhang Z C 2013 J. Appl. Polym. Sci. 127 3002Google Scholar
[24] Zhang Z C, Chung T C M 2007 Macromolecules 40 9391Google Scholar
[25] Yu K, Wang H, Zhou Y C, Bai Y Y, Niu Y J 2013 J. Appl. Phys. 113 034105Google Scholar
[26] Wang Z P, Nelson J K, Miao J J, Linhardt R J, Schadler L S, Hillborg H, Zhao S 2012 IEEE Trans. Dielect. El. In. 19 960Google Scholar
[27] Kim P, Doss N M, Tillotson J P, Hotchkiss P J, Pan M J, Marder S R, Li J Y, Calame J P, Perry J W 2009 ACS Nano 3 2581Google Scholar
[28] 王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗 2018 无机材料学报 33 1060
Wang L, Kong W J, Luo H, Zhou X F, Zhou K C, Zhang D 2018 Journal of Inorganic Materials 33 1060
[29] Xia W M, Xu Z, Wen F, Zhang Z C 2012 Ceram. Int. 38 1071Google Scholar
计量
- 文章访问数: 9095
- PDF下载量: 168
- 被引次数: 0