搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中值滤波和非均匀B样条的拉曼光谱基线校正算法

王昕 康哲铭 刘龙 范贤光

引用本文:
Citation:

基于中值滤波和非均匀B样条的拉曼光谱基线校正算法

王昕, 康哲铭, 刘龙, 范贤光

Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline

Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang
PDF
HTML
导出引用
  • 基线校正是拉曼光谱数据预处理的关键步骤之一, 是消除荧光干扰的有效方法. 传统的多项式拟合和均匀B样条拟合算法原理简单、易于实现, 但拟合阶数和内节点的不确定性限制了其灵活性. 因此, 本文提出了一种基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 该算法首先通过平滑预处理、差分计算和设置阈值筛选波谷点, 并根据光谱数据的波谷位置自适应地选择非均匀B样条的内节点; 接着利用中值滤波算法对光谱数据进行处理, 使非均匀B样条算法能够更好地拟合基线. 该算法克服了传统B样条算法需要根据不同的拉曼光谱手动选择内节点的缺点, 同时避免了光谱数据中的随机噪声对基线拟合的影响, 且进一步提高了光谱基线校正效果. 实验结果表明, 该算法能较好地消除拉曼信号基线漂移, 且不存在过拟合和欠拟合现象. 因此, 该算法可以为光谱数据的进一步分析提供更准确、可靠的信息.
    As one of the key steps for data preprocessing of Raman spectra, baseline correction is an effective method to eliminate fluorescence interference. Traditional algorithms such as polynomial fitting and uniform B-spline fitting are simple and easy to implement, but the uncertain fitting order and internal knots limit their flexibility. In addition, the baseline correction results of traditional algorithms often occur over and under fitting phenomena. Therefore, we propose a baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Firstly, the trough points of the spectral data are filtered by smoothing preprocess, difference calculation and threshold setting, and the internal knots of the un-uniform B-spline are adaptively selected by the trough positions of the spectral data. Then, the median filtering algorithm is used to process the spectral data so that the un-uniform B-spline has a better baseline fitting effect at the position where the signal changes from peak to smooth band. Finally, the un-uniform B-splines is used to fit the baseline by fitting the baseline iteratively. The proposed algorithm overcomes the shortcoming of traditional B-spline algorithm that the internal knots need to be selected manually based on different Raman spectra, and also avoids influencing the baseline fitting by random noise in the spectral data, and thus further improving the spectral baseline correction effect. The original Raman spectra of polymethyl methacrylate and normal octane are used for experimentally evaluating the baseline correction effect. Compared with the results from polynomial fitting, uniform B-spline and adaptive iteratively reweighted penalized least squares algorithms, the experimental results show that the proposed algorithm can well eliminate the Raman signal baseline drift effectively without over or under fitting phenomena, and it can perform better baseline correction for different baseline drift situations. Therefore, the proposed algorithm can provide more accurate and reliable information for the further analysis of spectral data.
      通信作者: 范贤光, fanxg@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21874113, 21974118)资助的课题
      Corresponding author: Fan Xian-Guang, fanxg@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21874113, 21974118)
    [1]

    Raman C V 1928 Nature 121 619

    [2]

    Morris M D 2006 Anal. Chem. 78 33Google Scholar

    [3]

    Geiman I, Leona M, Lombardi J R 2009 J. Forensic Sci. 54 947Google Scholar

    [4]

    Liu H, Zhang Z L, Liu S Y, Yan L X, Liu T T, Zhang T X 2015 Appl. Spectrosc. 69 1013Google Scholar

    [5]

    Cadusch P J, Hlaing M M, Wade S A, Mcarthur S L 2013 J. Raman Spectrosc. 44 1587Google Scholar

    [6]

    张锐, 赵学玒, 胡雅君, 郭媛, 王喆, 赵迎, 李子晓, 汪曣 2014 63 070702Google Scholar

    Zhang R, Zhao X H, Hu Y J, Guo Y, Wang Z, Zhao Y, Li Z X, Wang Y 2014 Acta Phys. Sin. 63 070702Google Scholar

    [7]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 63 098701Google Scholar

    Pang Y, Deng L, Lin J Z, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [8]

    Perez-Pueyo R, Soneira M J 2010 Appl. Spectrosc. 64 595Google Scholar

    [9]

    Shao L M, Griffiths P 2007 Environ. Sci. Technol. 41 7054Google Scholar

    [10]

    Zhao J H, Lui H, Mclean D I, Zeng H S 2007 Appl. Spectrosc. 61 1225Google Scholar

    [11]

    Wang W P, Pottmann H, Liu Y 2006 ACM Graphic. 25 214Google Scholar

    [12]

    Cai Y Y, Yang C H, Xu D G, Gui W H 2018 Anal. Methods. 10 3525Google Scholar

    [13]

    Zhang Z M, Chen S, Liang Y Z 2010 J. Raman Spectrosc. 41 659Google Scholar

    [14]

    范贤光, 王海涛, 王昕, 许英杰, 王秀芬, 阙靖 2016 光谱学与光谱分析 36 724

    Fan X G, Wang H T, Wang X, Xu Y J, Wang X F, Que J 2016 Spectrosc. Spec. Anal. 36 724

    [15]

    Martin T, Cohen E, Kirby R M 2009 Comput. Aided Geom. D. 26 648Google Scholar

    [16]

    Wang X, Fan X G, Xu Y J 2015 Meas. Sci. Technol. 26 115503Google Scholar

    [17]

    王昕, 范贤光, 许英杰, 吴景林, 梁骏, 左勇 2014 光谱学与光谱分析 34 2117Google Scholar

    Wang X, Fan X G, Xu Y J, Wu J L, Lian J, Zuo Y 2014 Spectrosc. Spec. Anal. 34 2117Google Scholar

    [18]

    卢德俊, 爨凯旋, 张伟峰 2018 光谱学与光谱分析 38 3708

    Lu J D, Cuan K X, Zhang W F 2018 Spectrosc. Spec. Anal. 38 3708

    [19]

    Juhola M, Katajainen J, Raita T 1991 IEEE T. on Signal Proces. 39 204Google Scholar

    [20]

    Zhang Z M, Chen S, Liang Y Z 2010 Analyst 135 1138Google Scholar

  • 图 1  波谷点选择策略

    Fig. 1.  Strategy of selection of trough points.

    图 2  内节点选择策略

    Fig. 2.  Strategy of selection of internal knots

    图 3  原始拉曼光谱和基于MF-UUB算法拟合的基线 (a) N-OCTANE拉曼光谱; (b) PMMA拉曼光谱

    Fig. 3.  Original Raman spectra and fitted baseline by MF-UUB: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    图 4  基于MF-UUB算法基线校正后的光谱 (a) N-OCTANE拉曼光谱; (b)PMMA拉曼光谱

    Fig. 4.  Corrected Raman spectra by MF-UUB: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    图 5  原始拉曼光谱和基于非均匀B样条算法拟合的基线 (a) N-OCTANE拉曼光谱; (b)PMMA拉曼光谱

    Fig. 5.  Original Raman spectra and fitted baseline by un-uniform B-spline algorithm: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    图 6  原始拉曼光谱和基于均匀B样条算法拟合的基线 (a) N-OCTANE原始拉曼光谱; (b) PMMA原始拉曼光谱

    Fig. 6.  Original Raman spectra and fitted baseline by uniform B-spline algorithm: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    图 7  原始拉曼光谱和基于多项式拟合算法拟合的基线 (a) N-OCTANE拉曼光谱; (b)PMMA拉曼光谱

    Fig. 7.  Original Raman spectra and fitted baseline by polynomial fitting algorithm: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    图 8  原始拉曼光谱和基于airPLS拟合的基线 (a) N-OCTANE拉曼光谱; (b)PMMA拉曼光谱

    Fig. 8.  Original Raman spectra and fitted baseline by airPLS algorithm: (a) N-OCTANE Raman spectrum; (b) PMMA Raman spectrum.

    Baidu
  • [1]

    Raman C V 1928 Nature 121 619

    [2]

    Morris M D 2006 Anal. Chem. 78 33Google Scholar

    [3]

    Geiman I, Leona M, Lombardi J R 2009 J. Forensic Sci. 54 947Google Scholar

    [4]

    Liu H, Zhang Z L, Liu S Y, Yan L X, Liu T T, Zhang T X 2015 Appl. Spectrosc. 69 1013Google Scholar

    [5]

    Cadusch P J, Hlaing M M, Wade S A, Mcarthur S L 2013 J. Raman Spectrosc. 44 1587Google Scholar

    [6]

    张锐, 赵学玒, 胡雅君, 郭媛, 王喆, 赵迎, 李子晓, 汪曣 2014 63 070702Google Scholar

    Zhang R, Zhao X H, Hu Y J, Guo Y, Wang Z, Zhao Y, Li Z X, Wang Y 2014 Acta Phys. Sin. 63 070702Google Scholar

    [7]

    庞宇, 邓璐, 林金朝, 李章勇, 周前能, 李国权, 黄华伟, 张懿, 吴炜 2014 63 098701Google Scholar

    Pang Y, Deng L, Lin J Z, Li Z Y, Zhou Q N, Li G Q, Huang H W, Zhang Y, Wu W 2014 Acta Phys. Sin. 63 098701Google Scholar

    [8]

    Perez-Pueyo R, Soneira M J 2010 Appl. Spectrosc. 64 595Google Scholar

    [9]

    Shao L M, Griffiths P 2007 Environ. Sci. Technol. 41 7054Google Scholar

    [10]

    Zhao J H, Lui H, Mclean D I, Zeng H S 2007 Appl. Spectrosc. 61 1225Google Scholar

    [11]

    Wang W P, Pottmann H, Liu Y 2006 ACM Graphic. 25 214Google Scholar

    [12]

    Cai Y Y, Yang C H, Xu D G, Gui W H 2018 Anal. Methods. 10 3525Google Scholar

    [13]

    Zhang Z M, Chen S, Liang Y Z 2010 J. Raman Spectrosc. 41 659Google Scholar

    [14]

    范贤光, 王海涛, 王昕, 许英杰, 王秀芬, 阙靖 2016 光谱学与光谱分析 36 724

    Fan X G, Wang H T, Wang X, Xu Y J, Wang X F, Que J 2016 Spectrosc. Spec. Anal. 36 724

    [15]

    Martin T, Cohen E, Kirby R M 2009 Comput. Aided Geom. D. 26 648Google Scholar

    [16]

    Wang X, Fan X G, Xu Y J 2015 Meas. Sci. Technol. 26 115503Google Scholar

    [17]

    王昕, 范贤光, 许英杰, 吴景林, 梁骏, 左勇 2014 光谱学与光谱分析 34 2117Google Scholar

    Wang X, Fan X G, Xu Y J, Wu J L, Lian J, Zuo Y 2014 Spectrosc. Spec. Anal. 34 2117Google Scholar

    [18]

    卢德俊, 爨凯旋, 张伟峰 2018 光谱学与光谱分析 38 3708

    Lu J D, Cuan K X, Zhang W F 2018 Spectrosc. Spec. Anal. 38 3708

    [19]

    Juhola M, Katajainen J, Raita T 1991 IEEE T. on Signal Proces. 39 204Google Scholar

    [20]

    Zhang Z M, Chen S, Liang Y Z 2010 Analyst 135 1138Google Scholar

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱.  , 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强.  , 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 刘小红, 姜珊, 常林, 张炜. 非贵金属表面增强拉曼散射基底的研究进展.  , 2020, 69(19): 190701. doi: 10.7498/aps.69.20200788
    [5] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析.  , 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [6] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性.  , 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱.  , 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [8] 张锐, 赵学玒, 胡雅君, 郭媛, 王喆, 赵迎, 李子晓, 汪曣. 一种用于一次谐波背景消除与基线校正的新型方法.  , 2014, 63(7): 070702. doi: 10.7498/aps.63.070702
    [9] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [10] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究.  , 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [11] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究.  , 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [12] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [13] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究.  , 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [14] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移.  , 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [15] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究.  , 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究.  , 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱.  , 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度.  , 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究.  , 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
计量
  • 文章访问数:  10678
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-06-19
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map