搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ca5N4高压新相的第一性原理研究

时旭含 李海燕 姚震 刘冰冰

引用本文:
Citation:

Ca5N4高压新相的第一性原理研究

时旭含, 李海燕, 姚震, 刘冰冰

First-principles study of Ca5N4 at high pressure

Shi Xu-Han, Li Hai-Yan, Yao Zhen, Liu Bing-Bing
PDF
HTML
导出引用
  • 通过在氮中引入杂质离子, 利用高压手段获得具有新奇结构的多氮化合物是目前被广泛应用的研究方法. 钙氮材料在催化、光电方面有着广泛的应用. 具有较低电离能的钙(Ca)元素很容易和氮原子形成离子键钙氮化物. 高压为寻找新型钙氮化合物提供了全新的技术途径. 因此, 利用高压方法, 通过改变配比的方式, 寻找具有新奇特性的钙氮高压结构, 是一项非常有意义的工作. 本文利用基于密度泛函理论的结构搜索方法, 在100 GPa条件下, 通过预测得到了一个稳定的Ca5N4相. 该结构内部氮原子之间以N—N共价单键键合, 氮原子和钙原子之间是离子键相互作用, 且钙氮之间的电荷转移量为1.26 e/N atom. 能带结构计算表明P 21/c-Ca5N4是一个直接带隙为1.447 eV的半导体结构. 最后, 系统地给出了该结构的拉曼振动光谱, 并指认了拉曼振动模式, 为实验合成该结构提供了理论指导.
    Recent studies have shown that introducing metal elements into nitrogen matrix can induce more stable poly-nitrogen structures than the pure nitrogen phase due to the ionic interaction between metal elements and nitrogen matrix. Many types of poly-nitrogen structures have been reported by using the alkaline earth metal elements (M = Be, Mg, Ca, Sr, Ba) as the coordinate elements. For example, the one-dimensional (1D) infinite armchair poly-nitrogen chain (N) structure and N6 ring structure are obtained for the MN4 and MN3 chemical stoichiometry, respectively. Interestingly, the stabilities of theses MNx structures are enhanced 2–3 times compared with that of the pure nitrogen. Therefore, exploring the novel and stable poly-nitrogen structure by introducing alkaline earth metal elements under high pressure is a great significant job. As an alkaline earth element, Ca is abundant in the earth. Its ionization energy (I1 = 590 kJ/mol) is far lower than that of Be (900 kJ/mol) and Mg (738 kJ/mol), which means that Ca can form calcium nitrides more easily. Zhu et al. (Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016Inorg. Chem. 55  7550) proposed that the Ca-N system can obtain poly-nitrogen structures under high pressure, such as CaN4 structure with armchair nitrogen chain, CaN5 and CaN3 consisting of pentazolate “N5” and benzene-like “N6” anions. These poly-nitrogen structures have potential applications in the field of high energy density materials. Here, we report the prediction of Ca-N system at 100 GPa by using particle swarm optimization algorithm technique for crystal structure prediction. A new thermal stable phase with P 21/c-Ca5N4 space group is found at 100 GPa, which enriches the phase of Ca-N system under high pressure. The dynamic stability and mechanical stability of new phase are confirmed by phono dispersion spectrum and elastic constant calculations. The electron localization function analysis shows that the nitrogen atoms in P 21/c-Ca5N4 are bonded by N—N single bond and electron transfer from Ca atom to N atom enables Ca5N4 to serve as an ionic-bonding interaction structure. Band structure calculation shows that the Ca5N4 has a semiconductor structure with a direct band gap of 1.447 eV. The PDOS calculation shows the valence band near Fermi energy is mainly contributed by N_p electrons, while the conduction band is mainly contributed by Ca_d electrons, indicating that electrons are transferred from Ca atom to N atom. Bader calculation shows that each N atom obtains 1.26e from Ca atom in P 21/c-Ca5N4. The Raman spectrum and X-ray diffraction spectrum are calculated and detailed Raman vibration modes are identified, which provides theoretical guidance for experimental synthesis.
      通信作者: 姚震, yaozhen@jlu.edu.cn ; 刘冰冰, liubb@jlu.edu.cn
    • 基金项目: 国家级-国家科技支撑计划(2018YFA0305900)
      Corresponding author: Yao Zhen, yaozhen@jlu.edu.cn ; Liu Bing-Bing, liubb@jlu.edu.cn
    [1]

    Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [2]

    Erba A, Maschio L, Pisani C, Casassa S 2011 Phys. Rev. B 84 012101Google Scholar

    [3]

    Hirshberg B, Gerber R B, Krylov A I 2014 Nat. Chem. 6 52Google Scholar

    [4]

    Özçelik V O, Aktürk O Ü, Durgun E, Ciraci S 2015 Phys. Rev. B 92 125420Google Scholar

    [5]

    Plašienka D, Martoňák R 2015 J. Chem. Phys. 142 094505Google Scholar

    [6]

    Yakub L N 2016 Low Temp. Phys. 42 1Google Scholar

    [7]

    Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar

    [8]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [9]

    Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, Ma Y 2012 Phys. Rev. Lett. 109 175502Google Scholar

    [10]

    Ma Y, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [11]

    Bondarchuk S V, Minaev B F 2017 Comput. Mater. Sci. 133 122Google Scholar

    [12]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [13]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [14]

    Zhao J F, Li N, Li Q S 2003 Theor. Chem. Acc. 110 10Google Scholar

    [15]

    Steele B A, Oleynik I I 2016 Chem. Phys.Lett. 643 21Google Scholar

    [16]

    Zhang M, Yin K, Zhang X, Wang H, Li Q, Wu Z 2013 Solid State Commun. 161 13Google Scholar

    [17]

    Peng F, Yao Y, Liu H, Ma Y 2015 J. Phys. Chem. Lett. 6 2363Google Scholar

    [18]

    Zhang J, Zeng Z, Lin H Q, Li Y L 2015 Sci. Rep. 4 4358Google Scholar

    [19]

    Wang X, Li J, Zhu H, Chen L, Lin H 2014 J. Chem. Phys. 141 044717Google Scholar

    [20]

    Williams A S, Steele B A, Oleynik I I 2017 J. Chem. Phys. 147 234701Google Scholar

    [21]

    Wei S, Li D, Liu Z, Wang W, Tian F, Bao K, Duan D, Liu B, Cui T 2017 J. Phys. Chem. C 121 9766Google Scholar

    [22]

    Yu S, Huang B, Zeng Q, Oganov A R, Zhang L, Frapper G 2017 J. Phys. Chem. C 121 11037Google Scholar

    [23]

    Wei S, Li D, Liu Z, Li X, Tian F, Duan D, Liu B, Cui T 2017 Phys. Chem. Chem. Phys. 19 9246Google Scholar

    [24]

    Hou P, Lian L, Cai Y, Liu B, Wang B, Wei S, Li D 2018 RSC Adv. 8 4314Google Scholar

    [25]

    Braun C, Börger S L, Boyko T D, Miehe G, Ehrenberg H, Höhn P, Moewes A, Schnick W 2011 J. Am. Chem. Soc. 133 4307Google Scholar

    [26]

    Hao J, Li Y, Wang J, Ma C, Huang L, Liu R, Cui Q, Zou G, Liu J, Li X 2010 J. Phys. Chem. C 114 16750Google Scholar

    [27]

    Römer S R, Schnick W, Kroll P 2009 J. Phys. Chem. C 113 2943Google Scholar

    [28]

    Gregory D H, Bowman A, Baker C F, Weston D P 2000 J. Mater. Chem. 10 1635Google Scholar

    [29]

    Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016 Inorg. Chem. 55 7550Google Scholar

    [30]

    Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I, Wang H T 2017 Nat. Chem. 9 440Google Scholar

    [31]

    Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182Google Scholar

    [32]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [33]

    Wang Y, Lv J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [36]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413Google Scholar

  • 图 1  100 GPa下Ca-N体系落在凸包图上热力学稳定的各比例

    Fig. 1.  Stable phases on the convex hulls of Ca-N system at 100 GPa.

    图 2  100 GPa下预测得到的Ca5N4晶体结构图((a))及多面体单元结构((b), (c))

    Fig. 2.  Crystalline structure of the predicted stable Ca5N4: (a) P 21/c phase at 100 GPa; (b), (c) he polyhedron units of Ca5N4.

    图 3  P 21/c相在100 GPa下的声子色散曲线图

    Fig. 3.  Phonon dispersion curves of P 21/c phase at 100 GPa

    图 4  P 21/c-Ca5N4结构在100 GPa下的二维ELF图

    Fig. 4.  Cross-sections of electron local function of P 21/c-Ca5N4 at 100 GPa.

    图 5  P 21/c-Ca5N4在100 GPa下的电子能带结构图和PDOS

    Fig. 5.  Band structure and projected density of states of P 21/c-Ca5N4 at 100 GPa, respectively.

    图 6  P 21/c-Ca5N4在100 GPa下的拉曼光谱

    Fig. 6.  Raman spectrum of P 21/c-Ca5N4 at 100 GPa.

    图 7  P 21/c-Ca5N4在100 GPa下的XRD图谱

    Fig. 7.  The X-ray diffraction spectrum of P 21/c-Ca5N4 at 100 GPa.

    Baidu
  • [1]

    Pickard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [2]

    Erba A, Maschio L, Pisani C, Casassa S 2011 Phys. Rev. B 84 012101Google Scholar

    [3]

    Hirshberg B, Gerber R B, Krylov A I 2014 Nat. Chem. 6 52Google Scholar

    [4]

    Özçelik V O, Aktürk O Ü, Durgun E, Ciraci S 2015 Phys. Rev. B 92 125420Google Scholar

    [5]

    Plašienka D, Martoňák R 2015 J. Chem. Phys. 142 094505Google Scholar

    [6]

    Yakub L N 2016 Low Temp. Phys. 42 1Google Scholar

    [7]

    Martin R M, Needs R J 1986 Phys. Rev. B 34 5082Google Scholar

    [8]

    Mailhiot C, Yang L H, McMahan A K 1992 Phys. Rev. B 46 14419Google Scholar

    [9]

    Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, Ma Y 2012 Phys. Rev. Lett. 109 175502Google Scholar

    [10]

    Ma Y, Oganov A R, Li Z, Xie Y, Kotakoski J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [11]

    Bondarchuk S V, Minaev B F 2017 Comput. Mater. Sci. 133 122Google Scholar

    [12]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [13]

    Tomasino D, Kim M, Smith J, Yoo C S 2014 Phys. Rev. Lett. 113 205502Google Scholar

    [14]

    Zhao J F, Li N, Li Q S 2003 Theor. Chem. Acc. 110 10Google Scholar

    [15]

    Steele B A, Oleynik I I 2016 Chem. Phys.Lett. 643 21Google Scholar

    [16]

    Zhang M, Yin K, Zhang X, Wang H, Li Q, Wu Z 2013 Solid State Commun. 161 13Google Scholar

    [17]

    Peng F, Yao Y, Liu H, Ma Y 2015 J. Phys. Chem. Lett. 6 2363Google Scholar

    [18]

    Zhang J, Zeng Z, Lin H Q, Li Y L 2015 Sci. Rep. 4 4358Google Scholar

    [19]

    Wang X, Li J, Zhu H, Chen L, Lin H 2014 J. Chem. Phys. 141 044717Google Scholar

    [20]

    Williams A S, Steele B A, Oleynik I I 2017 J. Chem. Phys. 147 234701Google Scholar

    [21]

    Wei S, Li D, Liu Z, Wang W, Tian F, Bao K, Duan D, Liu B, Cui T 2017 J. Phys. Chem. C 121 9766Google Scholar

    [22]

    Yu S, Huang B, Zeng Q, Oganov A R, Zhang L, Frapper G 2017 J. Phys. Chem. C 121 11037Google Scholar

    [23]

    Wei S, Li D, Liu Z, Li X, Tian F, Duan D, Liu B, Cui T 2017 Phys. Chem. Chem. Phys. 19 9246Google Scholar

    [24]

    Hou P, Lian L, Cai Y, Liu B, Wang B, Wei S, Li D 2018 RSC Adv. 8 4314Google Scholar

    [25]

    Braun C, Börger S L, Boyko T D, Miehe G, Ehrenberg H, Höhn P, Moewes A, Schnick W 2011 J. Am. Chem. Soc. 133 4307Google Scholar

    [26]

    Hao J, Li Y, Wang J, Ma C, Huang L, Liu R, Cui Q, Zou G, Liu J, Li X 2010 J. Phys. Chem. C 114 16750Google Scholar

    [27]

    Römer S R, Schnick W, Kroll P 2009 J. Phys. Chem. C 113 2943Google Scholar

    [28]

    Gregory D H, Bowman A, Baker C F, Weston D P 2000 J. Mater. Chem. 10 1635Google Scholar

    [29]

    Zhu S, Peng F, Liu H, Majumdar A, Gao T, Yao Y 2016 Inorg. Chem. 55 7550Google Scholar

    [30]

    Dong X, Oganov A R, Goncharov A F, Stavrou E, Lobanov S, Saleh G, Qian G R, Zhu Q, Gatti C, Deringer V L, Dronskowski R, Zhou X F, Prakapenka V B, Konôpková Z, Popov I A, Boldyrev A I, Wang H T 2017 Nat. Chem. 9 440Google Scholar

    [31]

    Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M, Prakapenka V 2009 Nature 458 182Google Scholar

    [32]

    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N, Ohishi Y 2016 Nat. Phys. 12 835Google Scholar

    [33]

    Wang Y, Lv J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [36]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413Google Scholar

  • [1] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [3] 朱金龙, 赵予生, 靳常青. 水合物研制、结构与性能及其在能源环境中的应用.  , 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [4] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理.  , 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [5] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究.  , 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [6] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性.  , 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理.  , 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [10] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究.  , 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [11] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [12] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究.  , 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振.  , 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究.  , 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [15] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究.  , 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [16] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质.  , 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [17] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究.  , 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
    [18] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能.  , 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [19] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散.  , 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
    [20] 柴永泉, 靳常青, 刘邦贵. 类MgB2硼化物晶体电子结构比较研究.  , 2003, 52(11): 2883-2889. doi: 10.7498/aps.52.2883
计量
  • 文章访问数:  8491
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2019-12-31
  • 刊出日期:  2020-03-20

/

返回文章
返回
Baidu
map