搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效介质原理的宽角超材料吸波体的理论分析

吴雨明 丁霄 王任 王秉中

引用本文:
Citation:

基于等效介质原理的宽角超材料吸波体的理论分析

吴雨明, 丁霄, 王任, 王秉中

Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory

Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong
PDF
HTML
导出引用
  • 目前, 很少有文章就如何实现宽角度吸波材料进行详细的理论分析和设计指导, 设计宽角度吸波材料仍然是一件很困难的事情. 本文基于等效介质理论对带有反射地板的单层介质超材料吸波体进行较为详细的理论分析. 从基础电磁理论出发, 推导TE波(横电波, 电场方向与入射面垂直的平面电磁波)和TM波(横磁波, 磁场方向与入射面垂直的平面电磁波)照射下吸波体的反射系数, 分析实现宽角度吸波效果所需的等效电磁参数, 为宽角度超材料吸波体的设计提供了理论基础. 此外, 论文还理论分析了实现宽带宽角吸波等效电磁参数所要满足的条件, 并做了计算检验. 结果表明, 当介质等效电磁参数按照特殊曲线随频率发生变化时, 理论上能实现宽带宽角的吸波效果.
    In the past decade, most of researchers have been devoted to broadening the bandwidth of absorber. There are few researches on how to achieve wide-angle absorbing materials by detailed theoretical analysis and design guidance. It is still difficult to design wide-angle absorbers. In this paper, based on the equivalent medium theory, the reflectivity of the metamaterial absorber with a single-layered medium backed with metal reflector is analyzed in detail. Starting from the basic electromagnetic theory, the reflection coefficient of the absorber under transverse electric(TE) plane wave and transverse magnetic (TM) plan wave irradiation are derived. And the equivalent electromagnetic parameters of realizing the wide-angle absorbing effect are analyzed, which provide a theoretical basis for designing the wide-angle metamaterial absorber. The theoretical analysis results show that the equivalent electromagnetic parameters required for the medium to achieve low-profile and wide-angle absorbing effect are mainly related to the equivalent permeability and have little relationship with the equivalent permittivity. Moreover, the equivalent electromagnetic parameter value for achieving ultra-wide-angle absorber under TE wave and that under TM wave irradiation are different from each other. In other words, the anisotropic metamaterial with appropriate equivalent permeability has the potential to be used to design the ultra-wide-angle absorbers which are not sensitive to TE waves nor TM waves. In addition, in order to find the theoretically achievable widest absorbing angle value under TE wave and TM wave irradiation, the reflection coefficients at all angles must be less than or equal to –10 dB to obtain the relationship among the equivalent electromagnetic parameters, thickness and angle. The results show that the theoretically achievable widest absorbing angle value is 86.56° under TE wave and TM wave irradiation. The designer can choose the corresponding thickness and permeability from the data obtained from the analysis according to the design requirements. The narrow-band absorbers have limited applications. Therefore, in this paper we also theoretically analyze the values of the equivalent electromagnetic parameters for ahcieving wide-band and wide-angle absorbing materials, and make theoretical verification. The results show that the wide-band and wide-angle absorber can be achieved theoretically, while the equivalent electromagnetic parameters of the medium vary with frequency as some special curves indicate. Although this method is based on the equivalent medium theory and has no direct relationship with the actual structure, it does provide theoretical guidance for designing the wide-angle absorbers.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61731005,61901086)
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antenna. Propag. 36 1443Google Scholar

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [3]

    Wang B X, Zhai X, Wang G Z, Huang W Q, Wang L L 2015 IEEE Photonics J. 7 4600108

    [4]

    Ding F, Cui X, Ge C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [5]

    Lin X Q, Mei P, Zhang P C, Chen Z Z D, Fan Y 2016 IEEE Trans. Antenna. Propag. 64 4910Google Scholar

    [6]

    Hao J P, Lheurette E, Burgnies L, Okada E, Lippens D 2014 Appl. Phys. Lett. 105 081102Google Scholar

    [7]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antenna. Propag. 65 5886Google Scholar

    [8]

    Shang Y P, Shen Z X, Xiao S Q 2013 IEEE Trans. Antenna. Propag. 61 6022Google Scholar

    [9]

    Rozanov K N 2000 IEEE Trans. Antenna. Propag. 48 1230Google Scholar

    [10]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [11]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [12]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103Google Scholar

    Chen Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [13]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [14]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [15]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla, Averitt 2008 Phys. Rev. B 78 241103Google Scholar

    [16]

    Wang B N, Koschny T, Soukouli Costa M 2009 Phys. Rev. B 80 033108Google Scholar

    [17]

    Lee D, Hwang J G, Lim D, Hara T, Lim S 2016 Sci. Rep. 6 27155Google Scholar

    [18]

    Nguyen T T, Lim S 2017 Sci. Rep. 7 3204Google Scholar

    [19]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

    [20]

    Wang J Y, Yang R C, Tian J P, Chen X W, Zhang W M 2018 IEEE Antenna. Wireless Propag. Lett. 17 1242Google Scholar

    [21]

    Jin Y, Xiao S S, Mortensen N A, He S L 2011 Opt. Express 19 11114Google Scholar

    [22]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103Google Scholar

    [23]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083Google Scholar

    [24]

    Chen W C, Bingham C M, Mak K M, Caira N W, Padilla W J 2012 Phys. Rev. B 85 201104Google Scholar

    [25]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801Google Scholar

  • 图 1  理论模型

    Fig. 1.  Theoretical model.

    图 2  超材料的反射系数随入射角度和材料电磁参数取值的变化 (a) TE波; (b) TM波

    Fig. 2.  The reflection coefficient of metamaterial varies with the angle of incidence and the value of the electromagnetic parameters of the material: (a) TE wave; (b) TM wave.

    图 3  超材料的反射系数随入射角度和材料电磁参数取值的变化 (a) TE波; (b) TM波

    Fig. 3.  The reflection coefficient of metamaterial varies with the angle of incidence and the value of the electromagnetic parameters of the material: (a) TE wave; (b) TM wave.

    图 4  超材料的反射系数随入射角度和厚度的变化 (a) TE波; (b) TM波

    Fig. 4.  The reflection coefficient of metamaterial varies with incident angle and thickness: (a) TE wave; (b) TM wave.

    图 5  TM波照射下超材料的反射系数随入射角度和z方向介电常数的关系

    Fig. 5.  The relationship among the reflection coefficient of metamaterials and incident angle and the dielectric constant of z direction under TM wave irradiation.

    图 6  超材料吸波体的吸收角度与介质厚度和${\mu _{r1 x}}$虚部的关系

    Fig. 6.  The relationship among the absorbing angle of the metamaterial absorber and the substrate thickness and imaginary part of ${\mu _{r1 x}}$.

    图 7  超材料吸波体吸收角度与介质厚度和${\mu _{r1 y}}$虚部的关系

    Fig. 7.  The relationship among the absorbing angle of the metamaterial absorber and the substrate thickness and imaginary part of ${\mu _{r1 y}}$.

    图 8  TE波 (a) 实现宽带化${\mu _{r1 x}}$虚部和d的关系; (b) 带地板色散介质的反射系数随入射角度和频率的变化

    Fig. 8.  TE wave: (a) The relationship between imaginary part of ${\mu _{r1 x}}$ and d for achieving broadband; (b) reflection properties of dispersive media backed with ground vary with incidence angle and frequency.

    图 9  TM波 (a) 实现宽带化${\mu _{r1 y}}$虚部和d的关系; (b)带地板色散介质的反射性能随入射角度和频率的变化

    Fig. 9.  TM wave: (a) The relationship between imaginary part of ${\mu _{r1 y}}$ and d for achieving broadband; (b) reflection properties of dispersive media backed with ground vary with angle of incidence and frequency.

    Baidu
  • [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antenna. Propag. 36 1443Google Scholar

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [3]

    Wang B X, Zhai X, Wang G Z, Huang W Q, Wang L L 2015 IEEE Photonics J. 7 4600108

    [4]

    Ding F, Cui X, Ge C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [5]

    Lin X Q, Mei P, Zhang P C, Chen Z Z D, Fan Y 2016 IEEE Trans. Antenna. Propag. 64 4910Google Scholar

    [6]

    Hao J P, Lheurette E, Burgnies L, Okada E, Lippens D 2014 Appl. Phys. Lett. 105 081102Google Scholar

    [7]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antenna. Propag. 65 5886Google Scholar

    [8]

    Shang Y P, Shen Z X, Xiao S Q 2013 IEEE Trans. Antenna. Propag. 61 6022Google Scholar

    [9]

    Rozanov K N 2000 IEEE Trans. Antenna. Propag. 48 1230Google Scholar

    [10]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [11]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [12]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 62 044103Google Scholar

    Chen Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [13]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [14]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 68 095201Google Scholar

    Li Y H, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [15]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla, Averitt 2008 Phys. Rev. B 78 241103Google Scholar

    [16]

    Wang B N, Koschny T, Soukouli Costa M 2009 Phys. Rev. B 80 033108Google Scholar

    [17]

    Lee D, Hwang J G, Lim D, Hara T, Lim S 2016 Sci. Rep. 6 27155Google Scholar

    [18]

    Nguyen T T, Lim S 2017 Sci. Rep. 7 3204Google Scholar

    [19]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

    [20]

    Wang J Y, Yang R C, Tian J P, Chen X W, Zhang W M 2018 IEEE Antenna. Wireless Propag. Lett. 17 1242Google Scholar

    [21]

    Jin Y, Xiao S S, Mortensen N A, He S L 2011 Opt. Express 19 11114Google Scholar

    [22]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103Google Scholar

    [23]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083Google Scholar

    [24]

    Chen W C, Bingham C M, Mak K M, Caira N W, Padilla W J 2012 Phys. Rev. B 85 201104Google Scholar

    [25]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801Google Scholar

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 温广锋, 赵领中, 张琳, 陈毅云, 罗圻林, 方安安, 刘士阳. 基于柱对称梯度折射率体系的可调控光束传输.  , 2022, 71(14): 144201. doi: 10.7498/aps.71.20212247
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计.  , 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [4] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*.  , 2020, (): . doi: 10.7498/aps.69.20201448
    [5] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计.  , 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [6] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备.  , 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [7] 林海笑, 俞昕宁, 刘士阳. 基于零折射磁性特异电磁介质的波前调控.  , 2015, 64(3): 034203. doi: 10.7498/aps.64.034203
    [8] 耿滔, 王岩, 王新, 董祥美. 非长波极限下二维光子晶体中横电模的等效介质理论.  , 2015, 64(15): 154210. doi: 10.7498/aps.64.154210
    [9] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计.  , 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [10] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体.  , 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [11] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [12] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究.  , 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [13] 徐阳秋, 张辉彬, 周佩珩, 陆海鹏, 梁迪飞, 谢建良. 基于金属线阵列嵌入的低频宽带电路模拟吸波体设计.  , 2013, 62(5): 058103. doi: 10.7498/aps.62.058103
    [14] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证.  , 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [15] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究.  , 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [16] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计.  , 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [17] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究.  , 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [18] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式.  , 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [19] 刘世元, 顾华勇, 张传维, 沈宏伟. 基于修正等效介质理论的微纳深沟槽结构反射率快速算法研究.  , 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [20] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用.  , 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
计量
  • 文章访问数:  9293
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 修回日期:  2019-12-18
  • 刊出日期:  2020-03-05

/

返回文章
返回
Baidu
map