-
太阳能光伏技术, 能实现太阳能与电能的高效转换, 是实现人类文明可持续发展的关键绿色能源技术. 其中, 有机无机杂化钙钛矿太阳能电池具有优异的光电特性、低廉的制备成本、高效的转换效率, 已成为该领域的研究前沿. 虽然有机无机杂化钙钛矿太阳能电池的光电转换效率已约高达24%, 但其体系中的有机物组分易受环境中的光、热、潮等因素影响而分解, 致使器件稳定性存在严重的缺陷, 极大地限制了钙钛矿太阳能电池的产业化进程. 因此, 如何制备高效稳定的钙钛矿太阳能电池, 是目前该领域的研究热点与难点, 而发展具有更高环境稳定性的全无机钙钛矿太阳能电池具有重要意义. 本文回顾了近年来全无机钙钛矿太阳能电池领域的研究成果, 重点审视了钙钛矿薄膜的湿法制备工艺, 并探讨了器件在光热稳定性方面的改善, 为进一步推动钙钛矿太阳能电池的实用化进程提供可行性参考.Photovoltaic technology, which can converse solar illumination into electricity, is crucial to the sustainable development of human civilization. Among them, the organic-inorganic hybrid perovskite solar cell (OIPSC) has become a research front due to its excellent photoelectric characteristics, low production cost and high power conversion efficiency (PCE). Although the PCE of OIPSC has exceeded 24%, the organic components in the perovskite system are sensitive to the decomposion caused by either being exposed to light or heated in high temperature environment. The stability defects have greatly limited the commercialization of perovskite solar cells. Therefore, it is urgent to improve the stability of perovskite solar cells, especially to solve the material decomposition problem. All-inorganic perovskite photovoltaic material, composed of all-inorganic elements, exhibits excellent heat and moisture resistance. Therefore, the development of all-inorganic perovskite solar cells is of great significance for solving the current stability problems in perovskite photovoltaics. In this work, we review the recent research progress of all-inorganic perovskite solar cells, discuss the solution approaches to processing all-inorganic perovskite films, and explore the enhancement of device stability. Our work provides a guideline for further promoting the device stability and PCE.
-
Keywords:
- all-inorganic perovskite /
- solution process /
- solar cell
[1] 范伟利, 杨宗林, 张振雲, 齐俊杰 2018 67 228801
Google Scholar
Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801
Google Scholar
[2] Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y, Zhang Z, Zhu C, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Grätzel M, Liu F, Russell T P, Zhu R, Gong Q 2017 Nat. Commun. 8 15688
Google Scholar
[3] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442
Google Scholar
[4] Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R, Gong Q 2016 Adv. Mater. 28 10718
Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[6] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[7] NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-12]
[8] Chung I, Lee B, He J, Chang R P H, Kanatzidis M G 2012 Nature 485 486
Google Scholar
[9] Chen Z, Wang J J, Ren Y, Yu C, Shum K 2012 Appl. Phys. Lett. 101 093901
Google Scholar
[10] Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239
[11] Cui P, Wei D, Ji J, Song D, Li Y, Liu X, Huang J, Wang T, You J, Li M 2017 Sol. RRL 1 1600027
Google Scholar
[12] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422
Google Scholar
[13] Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152
Google Scholar
[14] 张翱 陈, 闫君, 张春秀 2018 67 106701
Google Scholar
Zhao A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701
Google Scholar
[15] Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 1211
Google Scholar
[16] Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassim M 2015 J. Phys. Chem. C 119 26904
Google Scholar
[17] Liang J, Liu J, Jin Z 2017 Sol. RRL 1 1700086
Google Scholar
[18] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122
Google Scholar
[19] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690
Google Scholar
[20] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995
Google Scholar
[21] Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319
Google Scholar
[22] Lu C, Li H, Kolodziejski K, Dun C, Huang W, Carroll D, Geyer S M 2018 Nano Res. 11 762
[23] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92
Google Scholar
[24] Huang H, Chen B, Wang Z, Hung T F, Susha A S, Zhong H, Rogach A L 2016 Chem. Sci. 7 5699
Google Scholar
[25] De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071
Google Scholar
[26] Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688
Google Scholar
[27] Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345
Google Scholar
[28] Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571
Google Scholar
[29] Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L 2018 J. Mater. Chem. A 6 13263
Google Scholar
[30] Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261
Google Scholar
[31] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548
Google Scholar
[32] Luo P, Zhou Y, Zhou S, Lu Y, Xu C, Xia W, Sun L 2018 Chem. Eng. J. 343 146
Google Scholar
[33] Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J 2018 J. Phys. Chem. Lett. 9 3646
Google Scholar
[34] Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 5903
Google Scholar
[35] García de Arquer F P, Armin A, Meredith P, Sargent E H 2017 Nat. Rev. Mater. 2 16100
Google Scholar
[36] Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H 2017 Nat. Rev. Mater. 2 17026
Google Scholar
[37] Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H 2018 ACS Energy Lett. 3 1824
Google Scholar
[38] Liang J, Wang C, Zhao P, Lu Z, Ma Y, Xu Z, Wang Y, Zhu H, Hu Y, Zhu G, Ma L, Chen T, Tie Z, Liu J, Jin Z 2017 Nanoscale 9 11841
Google Scholar
[39] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603
Google Scholar
[40] Ramadan A J, Rochford L A, Fearn S, Snaith H J 2017 J. Phys. Chem. Lett. 8 4172
Google Scholar
[41] Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A 2015 Energy Environ. Sci. 8 2928
Google Scholar
[42] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225
Google Scholar
[43] Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y, Meng Q 2018 J. Mater. Chem. A 6 19810
Google Scholar
[44] Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J, Zhang J, Hao Y 2018 ACS Appl. Energy Mater. 1 4991
Google Scholar
[45] Liu C, Li W, Chen J, Fan J, Mai Y, Schropp R E I 2017 Nano Energy 41 75
Google Scholar
[46] Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202
Google Scholar
[47] Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458
Google Scholar
[48] Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. Engl. 57 3787
Google Scholar
[49] Hoffman J B, Zaiats G, Wappes I, Kamat P V 2017 Chem. Mat. 29 9767
Google Scholar
[50] Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184
Google Scholar
[51] Zhao Y, Duan J, Yuan H, Wang Y, Yang X, He B, Tang Q 2019 Sol. RRL 3 1800284
Google Scholar
[52] Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H 2017 Sustain. Energy Fuels 1 710
Google Scholar
[53] Song L, Wang W, Körstgens V, González D M, Yao Y, Minar N K, Feckl J M, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth S V, Müller-Buschbaum P 2016 Adv. Funct. Mater. 26 1498
Google Scholar
[54] Su B, Caller-Guzman H A, Korstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth S V, Muller-Buschbaum P 2017 ACS Appl. Mater. Inter. 9 43724
Google Scholar
[55] Heo J H, Lee M H, Jang M H, Im S H 2016 J. Mater. Chem. A 4 17636
Google Scholar
[56] Zheng Y, Kong J, Huang D, Shi W, McMillon-Brown L, Katz H E, Yu J, Taylor A D 2018 Nanoscale 10 11342
Google Scholar
[57] Cheng J, Hu R, Meng X, Li Y, Yan X, Yang X, Liao X, Li L, Pei Q, Chong K B 2018 Sol. RRL 2 1800064
Google Scholar
[58] Cheng J, Hu R, Wang Q, Zhang C, Xie Z, Long Z, Yang X, Li L 2015 Int. J. Photoenergy 2015 201472
[59] Lau C F J, Deng X, Ma Q, Zheng J, Yun J S, Green M A, Huang S, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573
Google Scholar
[60] Ruan W, Hu Y, Qiu T, Bai F, Zhang S, Xu F 2019 J. Phys. Chem. Solids 127 258
Google Scholar
[61] Zhou H, Fan L, He G, Yuan C, Wang Y, Shi S, Sui N, Chen B, Zhang Y, Yao Q, Zhao J, Zhang X, Yin J 2018 RSC Adv. 8 29089
Google Scholar
[62] Yang Z, Wang M, Li J, Dou J, Qiu H, Shao J 2018 ACS Appl. Mater. Inter. 10 26387
Google Scholar
[63] Liao H, Guo S, Cao S, Wang L, Gao F, Yang Z, Zheng J, Yang W 2018 Adv. Opt. Mater. 6 1800346
Google Scholar
[64] Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Jiang H, Li C 2016 J. Phys. Chem. Lett. 7 4253
Google Scholar
[65] Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Sol. RRL 2 1800164
Google Scholar
[66] Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028
Google Scholar
[67] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509
Google Scholar
[68] Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mat. 28 4259
Google Scholar
[69] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[70] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641
Google Scholar
[71] Yang D, Li X, Zeng H 2018 Adv. Mater. Inter. 5 1701662
Google Scholar
[72] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
Google Scholar
[73] Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H 2018 Nanoscale 10 9996
Google Scholar
[74] Zhao S, Yamamoto K, Iikubo S, Hayase S, Ma T 2018 J. Phys. Chem. Solids 117 117
Google Scholar
[75] Akkerman Q A, Meggiolaro D, Dang Z, de Angelis F, Manna L 2017 ACS Energy Lett. 2 2183
Google Scholar
[76] Greul E, Petrus Michiel L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972
Google Scholar
[77] Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S 2018 Joule 2 1500
Google Scholar
[78] Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580
Google Scholar
[79] Yang R X, Skelton J M, da Silva E L, Frost J M, Walsh A 2017 J. Phys. Chem. Lett. 8 4720
Google Scholar
[80] Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038
Google Scholar
[81] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061
Google Scholar
[82] Hao F, Stoumpos C C, Chang R P, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094
Google Scholar
[83] Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286
Google Scholar
[84] Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N 2015 J. Phys. Chem. C 119 1763
Google Scholar
[85] Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970
Google Scholar
[86] Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono L K, Qi Y 2018 Adv. Energy Mater. 8 1800504
Google Scholar
[87] Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F 2018 J. Mater. Chem. A 6 20365
Google Scholar
[88] Ge S, Wang Y, Xiang Z, Cui Y 2018 ACS Appl. Mater. Inter. 10 24620
Google Scholar
[89] Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T 2018 Chem. Mat. 31 6668
[90] Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q 2018 Adv. Energy Mater. 8 1802346
Google Scholar
[91] Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572
Google Scholar
[92] Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009
Google Scholar
[93] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692
Google Scholar
[94] Dastidar S, Egger D A, Tan L Z, Cromer S B, Dillon A D, Liu S, Kronik L, Rappe A M, Fafarman A T 2016 Nano Lett. 16 3563
Google Scholar
[95] Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D 2017 Adv. Funct. Mater. 27 1606750
Google Scholar
[96] Mondal N, De A, Samanta A 2018 J. Phys. Chem. Lett. 9 3673
Google Scholar
[97] Han G, Hadi H D, Bruno A, Kulkarni S A, Koh T M, Wong L H, Soci C, Mathews N, Zhang S, Mhaisalkar S G 2018 J. Phys. Chem. C 122 13884
Google Scholar
[98] Zheng Y, Shi W, Kong J, Huang D, Katz H E, Yu J, Taylor A D 2017 Small Methods 1 1700244
Google Scholar
[99] Jeong B, Han H, Choi Y J, Cho S H, Kim E H, Lee S W, Kim J S, Park C, Kim D, Park C 2018 Adv. Funct. Mater. 28 1706401
Google Scholar
[100] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat. Commun. 9 1076
Google Scholar
[101] Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J 2018 J. Mater. Chem. A 6 18258
Google Scholar
[102] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380
Google Scholar
[103] Zhang F, Kim D H, Zhu K 2018 Curr. Opin. Electr. 11 105
[104] Heo D Y, Han S M, Woo N S, Kim Y J, Kim T Y, Luo Z, Kim S Y 2018 J. Phys. Chem. C 122 15903
Google Scholar
[105] Zhao B, Jin S, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y, Hu J S 2018 J. Am. Chem. Soc. 140 11716
Google Scholar
[106] Huang Y, Yin W J, He Y 2018 J. Phys. Chem. C 122 1345
[107] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J 2018 Joule 2 1356
Google Scholar
[108] Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619
Google Scholar
[109] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635
Google Scholar
[110] Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204
Google Scholar
[111] Zou C, Xi Y, Huang C Y, Keeler E G, Feng T, Zhu S, Pozzo L D, Lin L Y 2018 Adv. Opt. Mater. 6 1800324
Google Scholar
[112] Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W 2018 Joule 2 2450
Google Scholar
[113] Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G, Liu S F 2018 Adv. Energy Mater. 8 1800007
Google Scholar
[114] Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194
[115] Liao J Y, He J W, Xu H, Kuang D B, Su C Y 2012 J. Mater. Chem. 22 7910
Google Scholar
[116] Wu W Q, Huang F, Chen D, Cheng Y B, Caruso R A 2015 Adv. Funct. Mater. 25 3264
Google Scholar
[117] Xu Y F, Wu W Q, Rao H S, Chen H Y, Kuang D B, Su C Y 2015 Nano Energy 11 621
Google Scholar
[118] Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230
Google Scholar
[119] Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120
Google Scholar
[120] Chen Z, Dong L, Tang H, Yu Y, Ye L, Zang J 2019 CrystEngComm 21 1389
Google Scholar
[121] Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741
Google Scholar
[122] Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951
Google Scholar
[123] Chen K, Wu P, Yang W, Su R, Luo D, Yang X, Tu Y, Zhu R, Gong Q 2018 Nano Energy 49 411
Google Scholar
[124] Zhang T, Dar M I, Li G, Xu F, Guo N, Grätzel M, Zhao Y 2017 Sci. Adv. 3 e1700841
Google Scholar
[125] Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H 2016 Adv. Mater. 28 4861
Google Scholar
[126] Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H 2017 ACS Nano 11 2015
Google Scholar
[127] Liao J F, Rao H S, Chen B X, Kuang D B, Su C Y 2017 J. Mater. Chem. A 5 2066
Google Scholar
[128] Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M 2018 Nanoscale 10 6318
Google Scholar
[129] Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y 2018 Joule 2 2065
Google Scholar
[130] Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600
Google Scholar
[131] Chuang C H, Brown P R, Bulovic V, Bawendi M G 2014 Nat. Mater. 13 796
Google Scholar
[132] Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Inter. 5 1800260
Google Scholar
[133] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 Adv. Energy Mater. 8 1703246
Google Scholar
[134] Hirotsu S, Harada J, Iizumi M, Gesi K 1974 J. Phys. Soc. Jpn. 37 1393
Google Scholar
[135] Luchkin S Y, Akbulatov A F, Frolova L A, Tsarev S A, Troshin P A, Stevenson K J 2017 Sol. Energy Mater. Sol. Cells 171 205
Google Scholar
[136] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746
Google Scholar
[137] Klein-Kedem N, Cahen D, Hodes G 2016 Acc. Chem. Res. 49 347
Google Scholar
[138] An R, Zhang F, Zou X, Tang Y, Liang M, Oshchapovskyy I, Liu Y, Honarfar A, Zhong Y, Li C, Geng H, Chen J, Canton S E, Pullerits T, Zheng K 2018 ACS Appl. Mater. Inter. 10 39222
Google Scholar
[139] Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128
[140] Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290
Google Scholar
[141] Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M, Lin H W 2014 Adv. Mater. 26 6647
Google Scholar
[142] Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67
Google Scholar
[143] Burwig T, Franzel W, Pistor P 2018 J. Phys. Chem. Lett. 9 4808
Google Scholar
[144] Hu Y, Wang Q, Shi YL, Li M, Zhang L, Wang Z K, Liao LS 2017 J. Mater. Chem. C 5 8144
Google Scholar
[145] Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 Jpn. J. Appl. Phys. 56 04CS11
[146] Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 ACS Omega 2 4464
Google Scholar
[147] Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558
Google Scholar
[148] Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469
Google Scholar
[149] Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219
Google Scholar
[150] Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J 2017 Joule 1 371
Google Scholar
[151] Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J, Chen H 2016 ACS Appl. Mater. Inter. 8 33649
Google Scholar
[152] Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q 2018 Mater. Today Energy 10 146
Google Scholar
[153] Gong J, Guo P, Benjamin S E, Van Patten P G, Schaller R D, Xu T 2018 J. Energy Chem. 27 1017
Google Scholar
[154] Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H 2018 Nat. Commun. 9 2793
Google Scholar
[155] Zhou Y, Zhao Y 2019 Energy Environ. Sci. 12 1495
Google Scholar
[156] Zhu C, Niu X, Fu Y, Li N, Hu C, Chen Y, He X, Na G, Liu P, Zai H, Ge Y, Lu Y, Ke X, Bai Y, Yang S, Chen P, Li Y, Sui M, Zhang L, Zhou H, Chen Q 2019 Nat. Commun. 10 815
Google Scholar
[157] Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297
Google Scholar
[158] Huang L Y, Lambrecht W R L 2016 Phys. Rev. B 93 195211
Google Scholar
[159] Ahmad W, Khan J, Niu G, Tang J 2017 Sol. RRL 1 1700048
Google Scholar
[160] Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D 2017 Inorg. Chem. 56 2596
Google Scholar
[161] Shojaei F, Yin W J 2018 J. Phys. Chem. C 122 15214
Google Scholar
[162] Huang J, Xiang S, Yu J, Li C Z 2019 Energy Environ. Sci. 12 929
Google Scholar
[163] Dong S, Liu Y, Hong Z, Yao E, Sun P, Meng L, Lin Y, Huang J, Li G, Yang Y 2017 Nano Lett. 17 5140
Google Scholar
[164] Gao K, Zhu Z, Xu B, Jo S B, Kan Y, Peng X, Jen A K 2017 Adv. Mater. 29 1703980
Google Scholar
[165] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828
Google Scholar
-
图 2 (a)一步成膜法制备CsPbI3粉末及薄膜[38]; (b)多步成膜法制备CsPbBr3[49]; (c)喷涂[62]; (d)一步静电纺丝工艺[63]
Fig. 2. Schematic illustration of (a) the one-step solution-phase synthesis and powders and thin film fabrication of CsPbI3[38], (b) the multi-step fabrication process of the cesium lead bromide films[49]; (c) spray-coated[62]; (d) one-step electrospinning technique[63].
图 3 (a) CsPbBr3, Cs0.98Li0.02PbBr3, Cs0.94Na0.06PbBr3, Cs0.92K0.08PbBr3和Cs0.91Rb0.09PbBr3薄膜的表面扫描电子显微镜(SEM)图像和不同碱金属阳离子掺杂全无机PSCs的伏安特性曲线[65]. (b) 各种金属离子对Pb2+的部分取代(掺杂或合金化), 改善正交CsPbBr3的热稳定性, 使α-CsPbI3稳定化[83]. 下图显示了Sn基全无机钙钛矿中随Br–浓度变化的带隙变化曲线图: 从左到右为CsSnI3, CsSnI2Br, CsSnIBr2和CsSnBr3[84]. (c) 在FTO / c-TiO2/m-TiO2基底上制备的不同镧系元素掺杂的钙钛矿薄膜的SEM图像: CsPbBr3, Yb3+-CsPbBr3, Er3+-CsPbBr3, Ho3+-CsPbBr3, Tb3+-CsPbBr3, Sm3+-CsPbBr3[90]; (d)纯CsPbI3和CsPbI3–xClx的化学烧结薄膜的紫外-可见吸收光谱和Abs及PL (右侧, 吸收(细线)和光致发光(粗线))图谱[94,95]; (e) CsPbI3通过PEO进行相稳定的机制和薄膜制备流程[99]
Fig. 3. (a) Scanning electron microscope (SEM) images of the CsPbBr3, Cs0.98Li0.02PbBr3, Cs0.94Na0.06PbBr3, Cs0.92K0.08PbBr3, and Cs0.91Rb0.09PbBr3 films and J-V curves of different alkali metal cations doped PSCs under air mass 1.5 global[65]. (b) Schematic representation showing partial substitution (doping or alloying) of Pb2+ by various metal ions, which can lead to stabilization of α-CsPbI3 at room temperature and improved thermal stability of orthorhombic CsPbBr3[83]. The graphic is about band gap variation with respect to Br− concentration in the Sn based all-inorganic perovskite: CsSnI3, CsSnI2Br, CsSnIBr2 and CsSnBr3 from left to right[84]. (c) The top SEM images of as-prepared perovskite films with different Lanthanide-doping on FTO/c-TiO2/m-TiO2 substrates CsPbBr3, Yb3+-CsPbBr3, Er3+-CsPbBr3, Ho3+-CsPbBr3, Tb3+-CsPbBr3, Sm3+-CsPbBr3[90]. (d) UV-vis absorbance spectra of chemically sintered thin films of pure CsPbI3 and CsPbI3−xClx, absorption spectra (thin lines) and photoluminescence (PL) spectra (thick lines) of CsPbX3 samples[94,95]. (e) PEO added in precursor colloidal solution to improve the stability of perovskite film and the fabrication process of CsPbI3[99].
图 4 (a) α-CsPbI3 QDs PCSs的结构和基于μGR/ CsPbI3薄膜的PSCs的电荷传输过程和稳定机制的示意图[113]; (b) 基于CsPbI3钙钛矿纳米线的光电探测器装置的能带图, 其中铝和氧化铟锡(indium tin oxides, ITO)作为电极, 基于CsPbI3钙钛矿纳米线的器件的示意图, 具有面积为0.0314 cm2的ITO的顶部圆形电极[122]; (c) 合成2D超薄CsPbBr3纳米片高倍放大SEM图像[125]; (d) 分级界面的太阳能电池的结构示意图和SEM图像[133]
Fig. 4. (a) Architecture of the completed α-CsPbI3 device and the charge transport process and stabilization mechanism for the μGR/CsPbI3 film based PSCs[113]; (b) band diagram for CsPbI3 perovskite nanowires (NWs)-based photodetector device and CsPbI3 perovskite NWs based device with top circular electorode[122]; (c) 2D-CsPbBr3 nanosheets high-magnification SEM images[125]; (d) schematic structures of devices without and with a graded interface and SEM images of CsPbBrI2 film, CsPbBrI2 NSs/CsPbBrI2 film, CsPbBrI2 QDs/CsPbBrI2 film, and CsPbBrI2 QDs/CsPbBrI2 NSs/CsPbBrI2 film[133].
图 5 (a) KPFM测量非老化和热老化的CsPbBr3振幅, 晶界上的形貌和功函数信号[135]; (b) CsPbI3在5 kV, 1 nA和点1, 2和3的CL光谱下的SEM图像[16]; (c)在光照射前后比较CsPbBr3和MAPbBr3之间的SEM图像的示意图[15]; (d) CsPbI3钙钛矿薄膜上的梯度Br掺杂和PTA有机阳离子表面钝化的示意图[27]
Fig. 5. (a) KPFM measurement on the non-aged and thermally aged CsPbBr3 amplitude, cross-sections of topography and work function signals over the grain boundary[135]; (b) SEM image of CsPbI3 under 5 kV, 1 nA, and CL spectra of points 1, 2 and 3 [16]; (c) schematic comparing SEM images between the CsPbBr3 and MAPbBr3 before and after illumination[15]; (d) gradient Br doping and PTA organic cation surface passivation on CsPbI3 perovskite thin film[27].
表 1 溶液法及其他方法全无机PSCs性能
Table 1. Performance of all inorganic perovskite solar cells fabricated by solution or other process.
电池结构 制备方法 VOC/V Jsc/mA·cm–2 FF/% PCE/% 参考文献 FTO/PEDOT:PSS/CsPbI3/PCBM/Al 溶液法 ~0.9 3 1.7 [26] FTO/c-TiO2/CsPbI3/Spiro-OMeTAD/Au 溶液法 0.8 12 2.9 [26] FTO/c-TiO2/m-TiO2/CsPbI3/Spiro-OMeTAD/Au 溶液法 ~0.6 8 1.3 [26] FTO/c-TiO2/CsPbI3/CuI/Au 溶液法 0.89 16.02 56.59 8.07 [149] FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au 溶液法 0.97 18.76 72.59 13.21 [149] FTO/TiO2/CsPbI3/Spiro-OMeTAD/Ag 溶液法 0.66 11.92 52.47 4.13 [39] FTO/c-TiO2/CsPbI3/Carbon 溶液法 0.67 14.31 48 4.65 [38] FTO/c-TiO2/m-TiO2/CsPbI3/Carbon 溶液法 0.58 13.74 44 3.48 [38] FTO/TiO2/AX-coatedCsPbI3-QDs/Spiro-OMeTAD/MoOx/Al 溶液法 1.16 15.24 76.63 13.43 [110] FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 溶液法 1.23 13.47 65 10.77 [23] MgF2/FTO/c-TiO2/m-TiO2/CsPb0.95Ca0.05I3/P3HT/Au 溶液法 0.95 17.9 80 13.5 [78] ITO/PTAA/zwitterion-CsPb(I0.98Cl0.02)3/PCBM/C60/BCP/Al 溶液法 1.09 14.9 70 11.4 [150] ITO/TiO2/CsPbBr3/Carbon 溶液法 0.64 5.3 64 3.9 [151] FTO/TiO2/CsPbI2Br-0.02MnCl2/PCBM/Ag 溶液法 1.172 14.37 80 13.47 [85] FTO/TiO2/CsPbI2Br/PTAA/Au 溶液法 1.177 14.25 80.2 13.45 [77] FTO/TiO2/CsPbI3 QDs/PTAA/Au 溶液法 1.192 11.75 78.3 10.97 [77] FTO/c-TiO2/CsPbI3-0.05DETAI3/P3HT/Au 溶液法 1.06 12.21 61 7.89 [101] FTO/TiO2/quasi-2D Cs0.9PEA0.1PbI3/Spiro-OMeTAD/Au 溶液法 0.838 10.96 62 5.7 [128] FTO/NiOx/InCl3:CsPbI2Br/ZnO@C60/Ag 溶液法 1.15 15.1 78 13.57 [91] FTO/NiOx/CsPbI2Br/ZnO@C60/Ag 溶液法 1.1 15.1 78 12.92 [91] FTO/TiO2/CsPbI3/Carbon 溶液法 0.79 18.5 65 9.5 [37] FTO/TiO2/CsPbI3 QDs/PTB7/MoOx/Ag 溶液法 1.27 12.39 80 12.55 [112] FTO/c-TiO2/BA2CsPb2I7/Spiro-OMeTAD/Au 溶液法 0.957 8.88 57 4.84 [127] FTO/TiO2/CsPb0.995Mn0.005I1.01Br1.99/Carbon 溶液法 0.99 13.15 57 7.36 [86] FTO/bl-TiO2/2 wt% Sn-TiO2/Cs2SnI4Br2/solid state Cs2SnI6 based HTM/LPAH 溶液法 0.563 6.22 57.7 2.025 [52] FTO/TiO2/CsPbI2Br/CsPbI3 QDs/PTAA/Au 溶液法 1.204 15.25 78.7 14.45 [77] FTO/c-TiO2/m-TiO2/CsPbBr3/MoS2 QDs/Carbon 喷涂法 1.307 6.55 79.4 6.80 [152] FTO/c-TiO2/m-TiO2/CsPbIBr2/Spiro-OMeTAD/Au 喷涂法 1.121 7.9 70 6.2 [59] FTO/SnO2 QDs/CsPbBr3/carbon 溶液法 1.572 7.68 75 9.15 [50] ITO/PEDOT:PSS/CsPbBr3/PCBM/Ag 溶液法 0.982 5.9 73.7 4.5 [135] FTO/m-TiO2/CsPbBr3/CsBi2/3Br3/carbon 溶液法 1.594 7.75 80.9 10.0 [50] FTO/SnO2 QDs/CsPbBr3/CsSnBr3 QDs/carbon 溶液法 1.610 7.8 84.4 10.6 [50] FTO/m-TiO2/Cs2AgBiBr6/Spiro-MeOTAD/Ag 溶液法 0.98 3.93 63 2.43 [76] FTO/TiO2/PTABrCsPbI3/Spiro-MeOTAD/Ag 溶液法 1.104 19.15 68.5 17.06 [27] FTO/TiO2/CsPbI3/Spiro-MeOTAD/Ag 溶液法 1.051 18.89 68.5 13.61 [27] PET/ITO/TiO2/CsPb0.96Bi0.04I3/Spiro-OMeTAD/Au 溶液-气相辅助法 1.05 15.11 72.32 11.47 [87] ITO/TiO2/CsPbI3/P3HT/Au 气相法 1.063 13.8 71.6 10.5 [142] ITO/TiO2/CsPbI3/Au 气相法 0.959 8.7 56 4.7 [46] ITO/C60/CsPbI2Br/TAPC/MoO3/Ag 气相法 1.15 15.2 67 11.7 [140] FTO/TiO2/CsPbI3/P3HT/Ag 气相法 0.79 12..06 72 6.79 [146] -
[1] 范伟利, 杨宗林, 张振雲, 齐俊杰 2018 67 228801
Google Scholar
Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801
Google Scholar
[2] Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y, Zhang Z, Zhu C, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Grätzel M, Liu F, Russell T P, Zhu R, Gong Q 2017 Nat. Commun. 8 15688
Google Scholar
[3] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442
Google Scholar
[4] Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R, Gong Q 2016 Adv. Mater. 28 10718
Google Scholar
[5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[6] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591
Google Scholar
[7] NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-12]
[8] Chung I, Lee B, He J, Chang R P H, Kanatzidis M G 2012 Nature 485 486
Google Scholar
[9] Chen Z, Wang J J, Ren Y, Yu C, Shum K 2012 Appl. Phys. Lett. 101 093901
Google Scholar
[10] Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239
[11] Cui P, Wei D, Ji J, Song D, Li Y, Liu X, Huang J, Wang T, You J, Li M 2017 Sol. RRL 1 1600027
Google Scholar
[12] Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422
Google Scholar
[13] Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152
Google Scholar
[14] 张翱 陈, 闫君, 张春秀 2018 67 106701
Google Scholar
Zhao A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701
Google Scholar
[15] Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 1211
Google Scholar
[16] Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassim M 2015 J. Phys. Chem. C 119 26904
Google Scholar
[17] Liang J, Liu J, Jin Z 2017 Sol. RRL 1 1700086
Google Scholar
[18] Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122
Google Scholar
[19] Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690
Google Scholar
[20] Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995
Google Scholar
[21] Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319
Google Scholar
[22] Lu C, Li H, Kolodziejski K, Dun C, Huang W, Carroll D, Geyer S M 2018 Nano Res. 11 762
[23] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92
Google Scholar
[24] Huang H, Chen B, Wang Z, Hung T F, Susha A S, Zhong H, Rogach A L 2016 Chem. Sci. 7 5699
Google Scholar
[25] De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071
Google Scholar
[26] Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688
Google Scholar
[27] Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345
Google Scholar
[28] Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571
Google Scholar
[29] Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L 2018 J. Mater. Chem. A 6 13263
Google Scholar
[30] Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261
Google Scholar
[31] Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548
Google Scholar
[32] Luo P, Zhou Y, Zhou S, Lu Y, Xu C, Xia W, Sun L 2018 Chem. Eng. J. 343 146
Google Scholar
[33] Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J 2018 J. Phys. Chem. Lett. 9 3646
Google Scholar
[34] Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 5903
Google Scholar
[35] García de Arquer F P, Armin A, Meredith P, Sargent E H 2017 Nat. Rev. Mater. 2 16100
Google Scholar
[36] Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H 2017 Nat. Rev. Mater. 2 17026
Google Scholar
[37] Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H 2018 ACS Energy Lett. 3 1824
Google Scholar
[38] Liang J, Wang C, Zhao P, Lu Z, Ma Y, Xu Z, Wang Y, Zhu H, Hu Y, Zhu G, Ma L, Chen T, Tie Z, Liu J, Jin Z 2017 Nanoscale 9 11841
Google Scholar
[39] Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603
Google Scholar
[40] Ramadan A J, Rochford L A, Fearn S, Snaith H J 2017 J. Phys. Chem. Lett. 8 4172
Google Scholar
[41] Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A 2015 Energy Environ. Sci. 8 2928
Google Scholar
[42] Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225
Google Scholar
[43] Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y, Meng Q 2018 J. Mater. Chem. A 6 19810
Google Scholar
[44] Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J, Zhang J, Hao Y 2018 ACS Appl. Energy Mater. 1 4991
Google Scholar
[45] Liu C, Li W, Chen J, Fan J, Mai Y, Schropp R E I 2017 Nano Energy 41 75
Google Scholar
[46] Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202
Google Scholar
[47] Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458
Google Scholar
[48] Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. Engl. 57 3787
Google Scholar
[49] Hoffman J B, Zaiats G, Wappes I, Kamat P V 2017 Chem. Mat. 29 9767
Google Scholar
[50] Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184
Google Scholar
[51] Zhao Y, Duan J, Yuan H, Wang Y, Yang X, He B, Tang Q 2019 Sol. RRL 3 1800284
Google Scholar
[52] Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H 2017 Sustain. Energy Fuels 1 710
Google Scholar
[53] Song L, Wang W, Körstgens V, González D M, Yao Y, Minar N K, Feckl J M, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth S V, Müller-Buschbaum P 2016 Adv. Funct. Mater. 26 1498
Google Scholar
[54] Su B, Caller-Guzman H A, Korstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth S V, Muller-Buschbaum P 2017 ACS Appl. Mater. Inter. 9 43724
Google Scholar
[55] Heo J H, Lee M H, Jang M H, Im S H 2016 J. Mater. Chem. A 4 17636
Google Scholar
[56] Zheng Y, Kong J, Huang D, Shi W, McMillon-Brown L, Katz H E, Yu J, Taylor A D 2018 Nanoscale 10 11342
Google Scholar
[57] Cheng J, Hu R, Meng X, Li Y, Yan X, Yang X, Liao X, Li L, Pei Q, Chong K B 2018 Sol. RRL 2 1800064
Google Scholar
[58] Cheng J, Hu R, Wang Q, Zhang C, Xie Z, Long Z, Yang X, Li L 2015 Int. J. Photoenergy 2015 201472
[59] Lau C F J, Deng X, Ma Q, Zheng J, Yun J S, Green M A, Huang S, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573
Google Scholar
[60] Ruan W, Hu Y, Qiu T, Bai F, Zhang S, Xu F 2019 J. Phys. Chem. Solids 127 258
Google Scholar
[61] Zhou H, Fan L, He G, Yuan C, Wang Y, Shi S, Sui N, Chen B, Zhang Y, Yao Q, Zhao J, Zhang X, Yin J 2018 RSC Adv. 8 29089
Google Scholar
[62] Yang Z, Wang M, Li J, Dou J, Qiu H, Shao J 2018 ACS Appl. Mater. Inter. 10 26387
Google Scholar
[63] Liao H, Guo S, Cao S, Wang L, Gao F, Yang Z, Zheng J, Yang W 2018 Adv. Opt. Mater. 6 1800346
Google Scholar
[64] Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Jiang H, Li C 2016 J. Phys. Chem. Lett. 7 4253
Google Scholar
[65] Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Sol. RRL 2 1800164
Google Scholar
[66] Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028
Google Scholar
[67] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509
Google Scholar
[68] Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mat. 28 4259
Google Scholar
[69] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[70] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641
Google Scholar
[71] Yang D, Li X, Zeng H 2018 Adv. Mater. Inter. 5 1701662
Google Scholar
[72] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122
Google Scholar
[73] Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H 2018 Nanoscale 10 9996
Google Scholar
[74] Zhao S, Yamamoto K, Iikubo S, Hayase S, Ma T 2018 J. Phys. Chem. Solids 117 117
Google Scholar
[75] Akkerman Q A, Meggiolaro D, Dang Z, de Angelis F, Manna L 2017 ACS Energy Lett. 2 2183
Google Scholar
[76] Greul E, Petrus Michiel L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972
Google Scholar
[77] Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S 2018 Joule 2 1500
Google Scholar
[78] Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580
Google Scholar
[79] Yang R X, Skelton J M, da Silva E L, Frost J M, Walsh A 2017 J. Phys. Chem. Lett. 8 4720
Google Scholar
[80] Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038
Google Scholar
[81] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061
Google Scholar
[82] Hao F, Stoumpos C C, Chang R P, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094
Google Scholar
[83] Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286
Google Scholar
[84] Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N 2015 J. Phys. Chem. C 119 1763
Google Scholar
[85] Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970
Google Scholar
[86] Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono L K, Qi Y 2018 Adv. Energy Mater. 8 1800504
Google Scholar
[87] Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F 2018 J. Mater. Chem. A 6 20365
Google Scholar
[88] Ge S, Wang Y, Xiang Z, Cui Y 2018 ACS Appl. Mater. Inter. 10 24620
Google Scholar
[89] Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T 2018 Chem. Mat. 31 6668
[90] Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q 2018 Adv. Energy Mater. 8 1802346
Google Scholar
[91] Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572
Google Scholar
[92] Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009
Google Scholar
[93] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692
Google Scholar
[94] Dastidar S, Egger D A, Tan L Z, Cromer S B, Dillon A D, Liu S, Kronik L, Rappe A M, Fafarman A T 2016 Nano Lett. 16 3563
Google Scholar
[95] Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D 2017 Adv. Funct. Mater. 27 1606750
Google Scholar
[96] Mondal N, De A, Samanta A 2018 J. Phys. Chem. Lett. 9 3673
Google Scholar
[97] Han G, Hadi H D, Bruno A, Kulkarni S A, Koh T M, Wong L H, Soci C, Mathews N, Zhang S, Mhaisalkar S G 2018 J. Phys. Chem. C 122 13884
Google Scholar
[98] Zheng Y, Shi W, Kong J, Huang D, Katz H E, Yu J, Taylor A D 2017 Small Methods 1 1700244
Google Scholar
[99] Jeong B, Han H, Choi Y J, Cho S H, Kim E H, Lee S W, Kim J S, Park C, Kim D, Park C 2018 Adv. Funct. Mater. 28 1706401
Google Scholar
[100] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat. Commun. 9 1076
Google Scholar
[101] Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J 2018 J. Mater. Chem. A 6 18258
Google Scholar
[102] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380
Google Scholar
[103] Zhang F, Kim D H, Zhu K 2018 Curr. Opin. Electr. 11 105
[104] Heo D Y, Han S M, Woo N S, Kim Y J, Kim T Y, Luo Z, Kim S Y 2018 J. Phys. Chem. C 122 15903
Google Scholar
[105] Zhao B, Jin S, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y, Hu J S 2018 J. Am. Chem. Soc. 140 11716
Google Scholar
[106] Huang Y, Yin W J, He Y 2018 J. Phys. Chem. C 122 1345
[107] Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J 2018 Joule 2 1356
Google Scholar
[108] Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619
Google Scholar
[109] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635
Google Scholar
[110] Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204
Google Scholar
[111] Zou C, Xi Y, Huang C Y, Keeler E G, Feng T, Zhu S, Pozzo L D, Lin L Y 2018 Adv. Opt. Mater. 6 1800324
Google Scholar
[112] Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W 2018 Joule 2 2450
Google Scholar
[113] Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G, Liu S F 2018 Adv. Energy Mater. 8 1800007
Google Scholar
[114] Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194
[115] Liao J Y, He J W, Xu H, Kuang D B, Su C Y 2012 J. Mater. Chem. 22 7910
Google Scholar
[116] Wu W Q, Huang F, Chen D, Cheng Y B, Caruso R A 2015 Adv. Funct. Mater. 25 3264
Google Scholar
[117] Xu Y F, Wu W Q, Rao H S, Chen H Y, Kuang D B, Su C Y 2015 Nano Energy 11 621
Google Scholar
[118] Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230
Google Scholar
[119] Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120
Google Scholar
[120] Chen Z, Dong L, Tang H, Yu Y, Ye L, Zang J 2019 CrystEngComm 21 1389
Google Scholar
[121] Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741
Google Scholar
[122] Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951
Google Scholar
[123] Chen K, Wu P, Yang W, Su R, Luo D, Yang X, Tu Y, Zhu R, Gong Q 2018 Nano Energy 49 411
Google Scholar
[124] Zhang T, Dar M I, Li G, Xu F, Guo N, Grätzel M, Zhao Y 2017 Sci. Adv. 3 e1700841
Google Scholar
[125] Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H 2016 Adv. Mater. 28 4861
Google Scholar
[126] Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H 2017 ACS Nano 11 2015
Google Scholar
[127] Liao J F, Rao H S, Chen B X, Kuang D B, Su C Y 2017 J. Mater. Chem. A 5 2066
Google Scholar
[128] Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M 2018 Nanoscale 10 6318
Google Scholar
[129] Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y 2018 Joule 2 2065
Google Scholar
[130] Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600
Google Scholar
[131] Chuang C H, Brown P R, Bulovic V, Bawendi M G 2014 Nat. Mater. 13 796
Google Scholar
[132] Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Inter. 5 1800260
Google Scholar
[133] Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 Adv. Energy Mater. 8 1703246
Google Scholar
[134] Hirotsu S, Harada J, Iizumi M, Gesi K 1974 J. Phys. Soc. Jpn. 37 1393
Google Scholar
[135] Luchkin S Y, Akbulatov A F, Frolova L A, Tsarev S A, Troshin P A, Stevenson K J 2017 Sol. Energy Mater. Sol. Cells 171 205
Google Scholar
[136] Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746
Google Scholar
[137] Klein-Kedem N, Cahen D, Hodes G 2016 Acc. Chem. Res. 49 347
Google Scholar
[138] An R, Zhang F, Zou X, Tang Y, Liang M, Oshchapovskyy I, Liu Y, Honarfar A, Zhong Y, Li C, Geng H, Chen J, Canton S E, Pullerits T, Zheng K 2018 ACS Appl. Mater. Inter. 10 39222
Google Scholar
[139] Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128
[140] Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290
Google Scholar
[141] Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M, Lin H W 2014 Adv. Mater. 26 6647
Google Scholar
[142] Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67
Google Scholar
[143] Burwig T, Franzel W, Pistor P 2018 J. Phys. Chem. Lett. 9 4808
Google Scholar
[144] Hu Y, Wang Q, Shi YL, Li M, Zhang L, Wang Z K, Liao LS 2017 J. Mater. Chem. C 5 8144
Google Scholar
[145] Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 Jpn. J. Appl. Phys. 56 04CS11
[146] Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 ACS Omega 2 4464
Google Scholar
[147] Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558
Google Scholar
[148] Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469
Google Scholar
[149] Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219
Google Scholar
[150] Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J 2017 Joule 1 371
Google Scholar
[151] Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J, Chen H 2016 ACS Appl. Mater. Inter. 8 33649
Google Scholar
[152] Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q 2018 Mater. Today Energy 10 146
Google Scholar
[153] Gong J, Guo P, Benjamin S E, Van Patten P G, Schaller R D, Xu T 2018 J. Energy Chem. 27 1017
Google Scholar
[154] Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H 2018 Nat. Commun. 9 2793
Google Scholar
[155] Zhou Y, Zhao Y 2019 Energy Environ. Sci. 12 1495
Google Scholar
[156] Zhu C, Niu X, Fu Y, Li N, Hu C, Chen Y, He X, Na G, Liu P, Zai H, Ge Y, Lu Y, Ke X, Bai Y, Yang S, Chen P, Li Y, Sui M, Zhang L, Zhou H, Chen Q 2019 Nat. Commun. 10 815
Google Scholar
[157] Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297
Google Scholar
[158] Huang L Y, Lambrecht W R L 2016 Phys. Rev. B 93 195211
Google Scholar
[159] Ahmad W, Khan J, Niu G, Tang J 2017 Sol. RRL 1 1700048
Google Scholar
[160] Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D 2017 Inorg. Chem. 56 2596
Google Scholar
[161] Shojaei F, Yin W J 2018 J. Phys. Chem. C 122 15214
Google Scholar
[162] Huang J, Xiang S, Yu J, Li C Z 2019 Energy Environ. Sci. 12 929
Google Scholar
[163] Dong S, Liu Y, Hong Z, Yao E, Sun P, Meng L, Lin Y, Huang J, Li G, Yang Y 2017 Nano Lett. 17 5140
Google Scholar
[164] Gao K, Zhu Z, Xu B, Jo S B, Kan Y, Peng X, Jen A K 2017 Adv. Mater. 29 1703980
Google Scholar
[165] Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828
Google Scholar
计量
- 文章访问数: 30504
- PDF下载量: 737
- 被引次数: 0