-
水的催化反应在界面进行,对新能源开发和环境保护等领域具有至关重要的作用.理解催化反应中材料界面水分子的结构、物性和分子机制,对于解决清洁能源、污水处理等关系国计民生的重大问题具有关键意义.由于水的复杂性,对于水分子在催化反应中的作用至今仍存在很大争议.界面水分子在催化反应中作为反应物、催化剂、溶剂,或是兼而有之,一直是科学界争论的热点话题.近年来,随着原位实验技术和计算机能力的快速提高,人们已经能够在原子尺度对催化反应中的界面水分子行为进行实时观测和理论模拟,为解析水在催化反应中的作用提供了实验依据和理论基础.本文简述当前催化反应中界面水研究面临的巨大机遇和挑战,以及现有实验和理论方法的最新进展和所遇到的困难,为设计优化与水应用相关的高效催化剂提供可行的思路.Catalysis of water, normally occurring at the interface, is crucial for the development of renewable energy and the environmental protection. Understanding the structures and chemical/physical properties of interfacial water during catalysis is of paramount importance for the sustainable development of human society, such as clean energy, wastewater treatment, and etc. However, owing to its complexity structure and mysterious property, the effect of water during catalysis is still an open question. The role of water during reactions, as reactant, catalyst, solvent, or both, has not been resolved. Recently, with the fast-development of in-situ experimental techniques and the computational capacity, the scientists started to investigate the behaviors of interfacial water using the real-time characterization and theoretical modeling at the atomic level, which provides the evidences and pictures to understand the effects of interfacial water. This paper will briefly introduce the current opportunities and challenges in studying the interfacial water, and the latest development and facing difficulty in experiment and theory, which will be beneficial for the future design of efficient catalysts for their applications in water.
-
Keywords:
- interfacial water /
- catalysis /
- in-situ experimental techniques /
- heoretical modeling
[1] Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010
[2] Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134
[3] Sustainability and Energy 2007 Science 315 721
[4] Whitesides G M, Crabtree G W 2007 Science 315 796
[5] Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)
[6] Kanan M W, Nocera D G 2008 Science 321 1072
[7] Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253
[8] Meyer T J 2008 Nature 451 778
[9] Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129
[10] Bond G C, Thompson D T 2000 Gold Bull. 33 41
[11] Gao Y, Zeng X C 2012 ACS Catalysis 2 2614
[12] Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530
[13] Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011
[14] Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325
[15] Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136
[16] Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150
[17] Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428
[18] Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43
[19] Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568
[20] Herrmann J M 1999 Catal. Today 53 115
[21] Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416
[22] Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930
[23] Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331
[24] Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650
[25] Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100
[26] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909
[27] Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287
[28] Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337
[29] Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645
[30] Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256
[31] Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025
[32] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935
[33] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757
[34] Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49
[35] Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467
[36] Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313
[37] Halmann M 1978 Nature 275 115
[38] Kanan M W, Nocera D G 2008 Science 321 1072
[39] Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645
[40] Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210
[41] Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921
[42] Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544
[43] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[44] Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1
[45] Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111
[46] Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94
[47] Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076
[48] Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230
[49] Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48
[50] Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746
[51] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026
[52] Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808
[53] Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173
[54] Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669
[55] Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726
[56] Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79
[57] Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473
[58] Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein
[59] Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175
[60] Bewick A 1983 J. Electroanal. Chem. 150 481
[61] Bewick A, Kunimatsu K 1980 Surface Sci. 101 131
[62] Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407
[63] Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103
[64] Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664
[65] Shen Y R 1989 Nature 337 519
[66] Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293
[67] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021
[68] Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131
[69] Anderson M S 2000 Appl. Phys. Lett. 76 3130
[70] Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333
[71] Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942
[72] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
[73] Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570
[74] Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189
[75] Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889
[76] Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184
[77] Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321
[78] Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701
[79] Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053
[80] Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654
[81] Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850
[82] Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932
[83] Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587
[84] Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309
[85] Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011
[86] Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916
[87] Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874
[88] Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394
[89] Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168
[90] Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77
[91] Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210
[92] Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070
[93] Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514
[94] Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150
[95] Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601
[96] Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954
[97] Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104
[98] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801
[99] Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101
[100] Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.
[101] Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464
[102] Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981
[103] Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503
-
[1] Eizember T R 2010 EIA 2010 Energy Conference: Short-Term Stresses, Long-Term Change Washington, DC, USA, April 6-7, 2010
[2] Malyshkina N, Niemeier D 2010 Environ. Sci. Technol. 44 9134
[3] Sustainability and Energy 2007 Science 315 721
[4] Whitesides G M, Crabtree G W 2007 Science 315 796
[5] Satterfield C 1996 Heterogeneous Catalysis in Industrial Practice (2nd Ed.) (Malabar, FL: Krieger Publishing Company)
[6] Kanan M W, Nocera D G 2008 Science 321 1072
[7] Kudo A, Miseki Y 2009 Chem. Soc. Rev. 38 253
[8] Meyer T J 2008 Nature 451 778
[9] Daté M, Okumura M, Tsubota S, Haruta M 2004 Angew. Chem. Int. Ed. 43 2129
[10] Bond G C, Thompson D T 2000 Gold Bull. 33 41
[11] Gao Y, Zeng X C 2012 ACS Catalysis 2 2614
[12] Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G 2016 Sci. Adv. 2 e1601530
[13] Zhang L, Liu L, Zhao Y, Gong S, Zhang X, Henze D K, Capps S L, Fu T M, Zhang Q, Wang Y 2015 Environ. Res. Lett. 10 084011
[14] Xue J, Yuan Z, Griffith S M, Yu X, Lau A K, Yu J Z 2016 Environ. Sci. Technol. 50 7325
[15] Percastegui E G, Mosquera J, Nitschke J R 2017 Angew. Chem. Int. Ed. 56 9136
[16] Egorova K S, Ananikov V P 2016 Angew. Chem. Int. Ed. 55 12150
[17] Lee K M, Lai C W, Ngai K S, Juan J C 2016 Water. Res. 88 428
[18] Varshney G, Kanel S R, Kempisty D M, Varshney V, Agrawal A, Sahle-Demessie E, Varma R S, Nadagouda M N 2016 Coord. Chem. Rev. 306 43
[19] Qu Y, Duan X 2013 Chem. Soc. Rev. 422 568
[20] Herrmann J M 1999 Catal. Today 53 115
[21] Lasia A 2003 Handbook of Fuel Cells: Fundamentals, Technology and Applications (Vol. 2) (Chichester, UK: Wiley) p416
[22] Primo A, Marino T, Corma T, Molinari R, Garcia H 2011 J. Am. Chem. Soc. 133 6930
[23] Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris R C, Qian F, Zhang J Z, Li Y 2009 Nano Lett. 9 2331
[24] Parkinson G S, Novotny Z, Jacobson P, Schmid M, Diebold U 2011 J. Am. Chem. Soc. 133 12650
[25] Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff L 2007 Science 317 100
[26] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Norskov J K 2006 Nature Mater. 5 909
[27] Kaneko H, Miura T, Fuse A, Ishihara H, Taku S, Fukuzumi H, Naganuma Y, Tamaura Y 2007 Energy & Fuels 21 2287
[28] Dinca M, Surendranath Y, Nocera D G 2010 Proc. Nat. Acad. Sci. U.S.A. 107 10337
[29] Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645
[30] Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M 2011 Science 334 1256
[31] Esposito D V, Hunt S T, Kimmel Y C, Chen J G 2012 J. Am. Chem. Soc. 134 3025
[32] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003 Science 301 935
[33] Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Pérez M 2007 Science 318 1757
[34] Valdés Á, Brillet J, Grätzel M, Gudmundsdótir H, Hansen H A, Jónsson H, Klüpfel P, Kroes G J, Formal F L, Man I C, Martins R S, Nørskov J K, Rossmeisl J, Sivula K, Vojvodic A, Zäch M 2012 Phys. Chem. Chem. Phys. 14 49
[35] Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, Zapol P, Kumar B, Klie R F, Abiade J, Curtiss L A, Salehi-Khojin A 2016 Science 353 467
[36] Angamuthu R, Byers P, Lutz M, Spek A L, Bouwman E 2010 Science 327 313
[37] Halmann M 1978 Nature 275 115
[38] Kanan M W, Nocera D G 2008 Science 321 1072
[39] Reece S Y, Hamel J A, Sung K, Jarvi T, Esswein A J, Pijpers J J H, Nocera D G 2011 Science 334 645
[40] Liu C, Colón B C, Ziesack M, Silver P A, Nocera D G 2016 Science 352 1210
[41] Niu K, Xu Y, Wang H, Ye R, Xin H L, Lin F, Tian C, Lum Y, Bustillo K C, Doeff M M, Koper M T M, Ager J, Xu R, Zheng H 2017 Sci. Adv. 3 e1700921
[42] Zhang X, Qin J, Hao R, Wang L, Shen X, Yu R, Limpanart S, Ma M, Liu R 2015 J. Phys. Chem. C 119 20544
[43] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y 2001 Science 293 269
[44] Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S C 2015 J. Photochem. Photobiol. C 25 1
[45] Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q, Chen Z, Li H 2015 ACS Appl. Mater. Interfaces 7 20111
[46] Jia X, Cao J, Lin H, Chen Y, Fu W, Chen S 2015 J. Mol. Catal. A: Chem. 409 94
[47] Benjwal P, Kar K K 2015 J. Environ. Chem. Eng. 3 2076
[48] Wang H, Dong S, Chang Y, Faria J L 2012 J. Hazard. Mater. 235 230
[49] Hamid S B A, Das R, Ali M E 2014 Adv. Mater. Res. 925 48
[50] Chen X, Liu L, Peter Y Y, Mao S S 2011 Science 331 746
[51] Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026
[52] Li Y H, Cheng S W, Yuan C S, Lai T F, Hung C H 2018 Chemosphere 208 808
[53] Cheng W, Quan X J, Li R H, Wu J, Zhao Q H 2018 Ozone Sci. Eng. 40 173
[54] Liu Y H, Lin H, Dong Y B, Li B, Wang L, Chu S Y, Luo M K, Liu J F 2018 Chem. Eng. J. 347 669
[55] Duca M, Koper M T M 2012 Energy Environ. Sci. 5 9726
[56] Mott N F, Watts-Tobin R J 1961 Electrochim. Acta 4 79
[57] Bockris J O’M, Habib M A 1975 J. Electroanal. Chem. 65 473
[58] Bockris J O'M, Khan S U M 1993 Surface Electrochemistry (New York: Plenum Press) Ch. 2 and references therein
[59] Bewick A, Kunimatsu K, Robinson J, Russell J W 1981 J. Electroanal. Chem. 276 175
[60] Bewick A 1983 J. Electroanal. Chem. 150 481
[61] Bewick A, Kunimatsu K 1980 Surface Sci. 101 131
[62] Kunimatsu K, Bewick A 1986 Indian J. Tech. 24 407
[63] Shingaya Y, Hirota K, Ogasawara H, Ito M 1986 J. Electroanal. Chem. 409 103
[64] Ataka K, Yostuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664
[65] Shen Y R 1989 Nature 337 519
[66] Liu W T, Shen Y R 2014 Proc. Natl. Acad. Soc. U.S.A. 111 1293
[67] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nature Rev. Mater. 1 16021
[68] Stöckle R M, Shu Y D, Deckert V, Zenobi R 2000 Chem. Phys. Lett. 318 131
[69] Anderson M S 2000 Appl. Phys. Lett. 76 3130
[70] Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2000 Opt. Commun. 183 333
[71] Pettinger B, Picardi G, Schuster R, Ertl G 2000 Electrochemistry 68 942
[72] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392
[73] Shpigel N, Levi M D, Sigalov S, Girshevitz O, Aurbach D, Daikhin L, Pikma P, Marandi M, Jänes A, Lust E, Jäckel N, Presser V 2016 Nature Mater. 15 570
[74] Bikondoa O, Pang C L, Ithnin R, Muryn C A, Onishi H, Thornton G 2006 Nature Mater. 5 189
[75] Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889
[76] Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nature Mater. 13 184
[77] Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321
[78] Peng J B, Cao D Y, He Z L, Guo J, Hapala P, Ma R Z, Cheng B W, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701
[79] Hansen P L, Wagner J B, Helveg S, Rostrup-Nielsen J R, Clausen B S, Topsoe H 2002 Science 295 2053
[80] Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H 2008 Science 321 1654
[81] Tao F, Dag S, Wang L W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A 2010 Science 327 850
[82] Tao F, Grass M E, Zhang Y, Butcher D R, Renzas J R, Liu Z, Chung J Y, Mun B S, Salmeron M, Somorjai G A 2008 Science 322 932
[83] Zhang X, Meng J, Zhu B, Yuan W, Yang H, Zhang Z, Gao Y, Wang Y 2018 Chem. Comm. 54 8587
[84] Zheng H M, Smith R K, Jun Y W, Kisielowski, C, Dahmen U, Alivisatos, A P 2009 Science 324 1309
[85] Liao H G, Cui L K, Whitelam S, Zheng H M 2012 Science 336 1011
[86] Liao H G, Zherebetskyy D, Xin H L, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H M 2014 Science 345 916
[87] Mirsaidov U, Mokkapati V R S S, Bhattacharya D, Andersen H, Bosman M, Ozyilmaz B, Matsudaira P 2013 Lab Chip 13 2874
[88] Smeets P J M, Cho K R, Kempen R G E, Sommerdijk N A J M, de Yoreo J J 2015 Nat. Mater. 14 394
[89] Chee S W, Pratt S H, Hattar K, Duquette D, Ross F M, Hull R 2015 Chem. Comm. 51 168
[90] Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nature Chem. 9 77
[91] Pham T A, Govoni M, Seidel R, Bradforth S E, Schwegler E, Galli G 2017 Sci. Adv. 3 e1603210
[92] Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J 2017 Nature Energy 2 17070
[93] Luo L L, Su M, Yan P F, Zou L F, Schreiber D K, Baer D R, Zhu Z H, Zhou G W, Wang Y T, Bruemmer S M, Xu Z J, Wang C M 2018 Nature Mater. 17 514
[94] Tuckerman M, Laasonen K, Sprik M, Parrinello M 1995 J. Chem. Phys. 103 150
[95] Marx D, Tuckerman M E, Hutter J, Parrinello M 1999 Nature 397 601
[96] Vittadini A, Selloni A, Rotzinger F P, Gratzel M 1998 Phys. Rev. Lett. 81 2954
[97] Meng S, Xu L F, Wang E G, Gao S W 2002 Phys. Rev. Lett. 89 176104
[98] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wang R Z, Hu J Z, Fang H P 2009 Phys. Rev. Lett. 103 137801
[99] Guo P, Tu Y S, Yang J R, Wang C L, Sheng N, Fang H P 2015 Phys. Rev. Lett. 115 186101
[100] Zhu B, Xu Z, Wang C L, Gao Y 2016 Nano Lett. 16 2628.
[101] Duan M, Yu J, Meng J, Zhu B, Wang Y, Gao Y 2018 Angew. Chem. Int. Ed. 57 6464
[102] Lohse D, Zhang X H 2015 Rev. Mod. Phys. 87 981
[103] Smith W, Lam R K, Shih O, Rizzuto A M, Prendergast D, Saykally R J 2015 J. Chem. Phys. 143 084503
计量
- 文章访问数: 8509
- PDF下载量: 240
- 被引次数: 0