-
采用类桑拿法制备了聚苯乙烯微球模板, 结合双层Mo金属结构, 获得了具有周期性结构的Mo金属催化电极. 通控制氧气对聚苯乙烯球的刻蚀时间, 可有效调制Mo金属催化电极的横、纵向尺寸, 从而获得不同的衬底比表面积. 通过原子力显微镜表面形貌测试、电化学线性扫描、塔菲尔测试以及阻抗谱分析表明: 增大刻蚀时间可有效提高Mo金属催化电极的表面粗糙度和比表面积, 进而降低电荷传输电阻和塔菲尔斜率, 促进催化电极/电解液界面处析氢反应的进行. 采用类桑拿法和双层Mo金属结构制备周期性结构的方法简单, 可大面积化, 同时低温磁控溅射法制备的Mo金属催化电极成本低廉, 温度兼容多种太阳电池器件, 具有形成高效一体化光水解制氢器件的潜力.To verify that the molybdenum metals exhibit similar catalysis characteristics as the related molybdenum compounds, i.e. molybdenum selenide (MoSe2) and molybdenum sulfide (MoS2) which have been well known as the high-performing catalysts for hydrogen evolution reactions, we may thus seek a low-cost, process-simplified, scalable, and highly-catalytic counterpart. We have grown periodic molybdenum (Mo) metal catalytic electrodes by employing self-assembled polystyrene (PS) spheres prepared by a sauna-like method as templates, followed by a reactive ion etching (RIE) process with oxygen gas and a double-layer deposition by low-temperature magnetron sputtering. By controlling the etching time of oxygen gas on PS spheres during the RIE process, the lateral and vertical feature sizes of Mo catalytic electrodes can be efficiently controlled, thereby having various surface area ratios. According to surface morphologies from atomic force microscopy, electrochemical linear sweep voltammetry, Tafel, and impendency measurements, we have found that the surface roughness and surface area ratios of Mo metal catalytic electrodes can be enhanced by prolonging the etching times of PS spheres, thereby reducing the charge transfer resistances and Tafel slopes, and then improving the hydrogen evolution reactions at the catalysts/electrolyte interfaces. We attribute this improvement to the fact that the Mo metal catalytic electrodes can efficiently form beneficial Schottky junctions with the electrolyte to enhance the carrier transportation, and the increased surface area ratios can improve the effective area of the Schottky junctions, thereby enhancing the carrier transportation at the catalysts/electrolyte interfaces. Tafel slope of the periodic molybdenum (Mo) metal catalytic electrodes in our work is as low as about 53.9 mV/dec, equivalent to highly catalytic materials MoS2 (55 mV/dec) and MoSe2 (105-120 mV/dec). The proposed periodic Mo catalytic electrodes, which combine a simple sauna-like self-assembly process with a double-layer Mo architecture is scalable and simple; and the surface area of periodic molybdenum (Mo) metal catalytic electrodes can also be flexibly controlled, so that the low-temperature magnetron sputtered Mo metal catalytic electrodes are cost-effective and highly compatible with various photovoltaic devices, highlighting the great potential to form high efficient monolithic solar-water-splitting devices.
-
Keywords:
- catalysts /
- polystyrene spheres /
- molybdenum metal catalytic electrodes /
- hydrogen production
[1] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446
[2] Minggu L J, Daud W R W, Kassim M B 2010 J. Hydrogen Energ. 35 5233
[3] Abdi F F, Han L, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195
[4] Jiang X G, Jia J M, Lu H F, Zhu Q L, Huang H F 2015, Acta Phys. -Chim. Sin. 31 1399 (in Chinese) [蒋孝佳, 贾建明, 卢晗锋, 朱秋莲, 黄海凤 2015 物理化学学报 31 1399]
[5] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[6] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B. Zhang W L 2012 Chin. Phys. B 21 118101
[7] Lin Y, Battaglia C, Boccard M, Hettick M, Yu Z, Ballif C, Javey A 2013 Nano Lett. 13 5615
[8] Sun J, Zhong D K, Gamelin D R 2010 Energy Environ. Sci. 3 1252
[9] Kong D S, W H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341
[10] Pu Y C, Wang G, Chang K D, Ling Y, Lin Y K, Fitzmorris B C, Li Y 2013 Nano Lett. 13 3817
[11] Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358
[12] Fu Y N, Jin Z G, Liu G Q, Yin Y X 2009 Synthetic Metals 159 1744
[13] Li S H, Ren L K, Yang Z, Zhang Z Y, Gao F H, Du J L, Zhang S J 2014 Microelectron. Eng. 113 143
[14] Zang Z G, Wen M Q, Chen W W, Zeng Y Fu, Zu Z Q, Zeng X F, Tang X S 2015 Mater. Design 84 418
[15] Liang X J, Liu B F, Bai L S, Liang J H, Gao H B, Zhao Y, Zhang X D 2014 J. Mater. Chem. A 2 13259
[16] Liu B F, Liang X J, Liang J H, Bai L S, Gao H B, Chen Z, Zhang X D 2015 Nanoscale 7 9816
[17] Merki D, Vrubel H, Rovelli L, Fierro S, Hu X 2012 Chem. Sci. 3 2515
-
[1] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446
[2] Minggu L J, Daud W R W, Kassim M B 2010 J. Hydrogen Energ. 35 5233
[3] Abdi F F, Han L, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195
[4] Jiang X G, Jia J M, Lu H F, Zhu Q L, Huang H F 2015, Acta Phys. -Chim. Sin. 31 1399 (in Chinese) [蒋孝佳, 贾建明, 卢晗锋, 朱秋莲, 黄海凤 2015 物理化学学报 31 1399]
[5] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese) [李宗宝, 王霞, 樊帅伟 2014 63 157102]
[6] Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B. Zhang W L 2012 Chin. Phys. B 21 118101
[7] Lin Y, Battaglia C, Boccard M, Hettick M, Yu Z, Ballif C, Javey A 2013 Nano Lett. 13 5615
[8] Sun J, Zhong D K, Gamelin D R 2010 Energy Environ. Sci. 3 1252
[9] Kong D S, W H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y 2013 Nano Lett. 13 1341
[10] Pu Y C, Wang G, Chang K D, Ling Y, Lin Y K, Fitzmorris B C, Li Y 2013 Nano Lett. 13 3817
[11] Park W I, Yi G C, Kim J W, Park S M 2003 Appl. Phys. Lett. 82 4358
[12] Fu Y N, Jin Z G, Liu G Q, Yin Y X 2009 Synthetic Metals 159 1744
[13] Li S H, Ren L K, Yang Z, Zhang Z Y, Gao F H, Du J L, Zhang S J 2014 Microelectron. Eng. 113 143
[14] Zang Z G, Wen M Q, Chen W W, Zeng Y Fu, Zu Z Q, Zeng X F, Tang X S 2015 Mater. Design 84 418
[15] Liang X J, Liu B F, Bai L S, Liang J H, Gao H B, Zhao Y, Zhang X D 2014 J. Mater. Chem. A 2 13259
[16] Liu B F, Liang X J, Liang J H, Bai L S, Gao H B, Chen Z, Zhang X D 2015 Nanoscale 7 9816
[17] Merki D, Vrubel H, Rovelli L, Fierro S, Hu X 2012 Chem. Sci. 3 2515
计量
- 文章访问数: 6206
- PDF下载量: 189
- 被引次数: 0