搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型

刘嘉豪 杨晓阔 危波 李成 张明亮 李闯 董丹娜

引用本文:
Citation:

基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型

刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜

Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet

Liu Jia-Hao, Yang Xiao-Kuo, Wei Bo, Li Cheng, Zhang Ming-Liang, Li Chuang, Dong Dan-Na
PDF
导出引用
  • 纳米磁性逻辑器件具有高抗辐射性、低功率、天然非易失性等优势,应用前景广阔.倾斜放置的纳磁体具有翻转倾向性,在控制时钟撤去后倾斜纳磁体倾向于翻转至长轴的一端.利用倾斜纳磁体的翻转倾向性,提出了一种应力调控的与(或)磁逻辑门,并建立了其动态磁化的数学模型.使用微磁学方法对逻辑门进行了仿真,结果验证了预期逻辑门功能.与现有的逻辑门相比,基于倾斜纳磁体的与(或)门结构具有能耗更低、可靠性更高和制造工艺更简单等优点.
    Nano-magnetic logic device (NMLD) is a novel nanoelectronic device that stores, processes, and transfers information by dipole-coupled magneto-static interactions between nanomagnets. In the NMLD, long axis tilted nanomagnet attracts the attention of researchers due to its flexibility in magnetic logic design. Edge-slanted nanomagnet is wildly used, whose long axis is tilted due to its asymmetric shape. However, there are three defects in edge-slanted nanomagnets. 1) This type of nanomagnet requires a larger size, thus increasing the nano-magnetic logic (NML) space and introducing the C-shape and vortex clock errors that are often found in large-sized nanomagnets. 2) The irregular shape of nanomagnet increases the requirements for fabrication. 3) Complex calculations caused by the irregular shape are inevitable.
    In this paper, the tilt of the long axis of the nanomagnet is realized by placing the regular-shaped (elliptical cylinder) nanomagnet (50 nm×100 nm×20 nm) obliquely. According to the flipping preference of tilted nanomagnet, the authors design a two-input AND (OR) logic gate clocked by stress. The authors choose PMN-PT (Pb (Mg1/3Nb2/3) O3-PbTiO3) as the piezoelectric layer material to use its high piezoelectric coefficient. For magnetic materials, the authors choose Terfenol-D (Tb0.7Dy0.3Fe2), whose magnetic crystal anisotropy is smaller. The material of the subatrate is not discussed in this paper, which will be further studied in future experimental work. The mathematical model is established, and the dynamic magnetization of the gate is calculated. A stress of 90 MPa is applied to the output nanomagent for 3 ns. The nanomagnet is flipped to “NULL” at 1.8 ns and is then flipped to the final stable state after the stress has been removed for 0.9 ns. The output will become logic “0” (“1”) only if the input is logic “00” (“11”), otherwise the output will be logic “1” (“0”), thus successfully implementing OR (AND) logic. In addition, the gate is simulated by using the micromagnetic method. The results are basically consistent with our model. Unlike the designs based on edge-slanted nanomagnets, the basic logic gate based on tilted nanomagnets has three advantages. 1) This design allows high-aspect-ratio (2:1) nanomagnets to be used in logic functions. Therefore, less vortex and C-shaped error will be generated. 2) The regular shape can reduce the fabrication requirements and computational complexities. 3) Using stress as a clock, the energy consumption is greatly reduced, which can be only one-tenth of the general designs clocked by spin electronics.
    This model provides a greater energy efficiency and reliable basic logic unit for NML design. In the experimental preparation, there may be a large preparation error tilting the nanomagnet. As a solution, the stress electrodes can be tilted instead. So the stress will also make an angle with respect to the long axis of the nanomagnet.
    [1]

    Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205

    [2]

    Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55

    [3]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562

    [4]

    Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526

    [5]

    Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277

    [6]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [7]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [8]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59

    [9]

    Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452

    [10]

    Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102

    [11]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001

    [12]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [13]

    Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004

    [14]

    Roy K 2013 Appl. Phys. Lett. 103 173110

    [15]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220

    [16]

    Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1

    [17]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501

    [18]

    Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405

    [19]

    A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307

    [20]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391

    [21]

    Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660

    [22]

    Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1

    [23]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161

    [24]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905

    [25]

    Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18

    [26]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478

    [27]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002

    [28]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412

    [29]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [30]

    Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297

    [31]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [32]

    Brown W F 1963 Phys. Rev. 130 1677

    [33]

    Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76

    [34]

    Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376

  • [1]

    Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205

    [2]

    Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55

    [3]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562

    [4]

    Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526

    [5]

    Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277

    [6]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [7]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [8]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59

    [9]

    Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452

    [10]

    Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102

    [11]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001

    [12]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [13]

    Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004

    [14]

    Roy K 2013 Appl. Phys. Lett. 103 173110

    [15]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220

    [16]

    Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1

    [17]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501

    [18]

    Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405

    [19]

    A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307

    [20]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391

    [21]

    Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660

    [22]

    Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1

    [23]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161

    [24]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905

    [25]

    Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18

    [26]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478

    [27]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002

    [28]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412

    [29]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [30]

    Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297

    [31]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [32]

    Brown W F 1963 Phys. Rev. 130 1677

    [33]

    Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76

    [34]

    Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376

  • [1] 权东晓, 吕晓杰, 张雯菲. 多逻辑比特表面码结构设计及其逻辑CNOT门实现.  , 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [2] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文. 一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门.  , 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [4] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质.  , 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [5] 袁佳卉, 杨晓阔, 张斌, 陈亚博, 钟军, 危波, 宋明旭, 崔焕卿. 混合时钟驱动的自旋神经元器件激活特性和计算性能.  , 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [6] 张松然, 何代华, 涂华垚, 孙艳, 康亭亭, 戴宁, 褚君浩, 俞国林. HgCdTe薄膜的输运特性及其应力调控.  , 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [7] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门.  , 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [8] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] 危波, 蔡理, 杨晓阔, 李成. 基于多铁纳磁体的择多逻辑门三维磁化动态特性研究.  , 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [10] 王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯. 基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究.  , 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [11] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究.  , 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [12] 张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森. 基于交换作用的纳磁逻辑电路片上时钟结构研究.  , 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [13] 徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥. La, Nb共掺杂BiFeO3薄膜中的光致应变效应及应力调控.  , 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [14] 颜森林. 激光混沌并联同步及其在全光逻辑门中的应用研究.  , 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [15] 杨晓阔, 蔡理, 王久洪, 黄宏图, 赵晓辉, 李政操, 刘保军. 磁性量子元胞自动机功能阵列的实验研究.  , 2012, 61(4): 047502. doi: 10.7498/aps.61.047502
    [16] 颜森林. 激光混沌耦合反馈光电及全光逻辑门研究.  , 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [17] 董建绩, 张新亮, 王 阳, 黄德修. 基于单个半导体光放大器的高速多功能逻辑门.  , 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [18] 李燕明, 陈理想, 佘卫龙. 光致异构全光逻辑门理论与实验研究.  , 2007, 56(10): 5895-5902. doi: 10.7498/aps.56.5895
    [19] 郭 旗, 张霞萍, 胡 巍, 寿 倩. 基于强非局域空间光孤子特性的光子开关和光子逻辑门.  , 2006, 55(4): 1832-1839. doi: 10.7498/aps.55.1832
    [20] 冯晓强, 侯 洵, 杨文正, 杨 青, 陈 烽. 基于细菌视紫红质光子逻辑门的实验研究.  , 2003, 52(11): 2803-2806. doi: 10.7498/aps.52.2803
计量
  • 文章访问数:  5444
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-11-26
  • 刊出日期:  2019-01-05

/

返回文章
返回
Baidu
map