搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Re3W的点接触安德烈夫反射谱研究

王宗 侯兴元 潘伯津 谷亚东 张孟迪 张凡 陈根富 任治安 单磊

引用本文:
Citation:

Re3W的点接触安德烈夫反射谱研究

王宗, 侯兴元, 潘伯津, 谷亚东, 张孟迪, 张凡, 陈根富, 任治安, 单磊

Point-contact Andreev reflection spectroscopy on Re3W superconductor

Wang Zong, Hou Xing-Yuan, Pan Bo-Jin, Gu Ya-Dong, Zhang Meng-Di, Zhang Fan, Chen Gen-Fu, Ren Zhi-An, Shan Lei
PDF
导出引用
  • 本文通过对不同晶体结构Re3W样品的点接触测量和对比研究,证实具有中心对称结构和非中心对称结构的Re3W都是弱耦合Bardeen-Cooper-Schrieffer超导体,同时发现在两个相表面都可以形成很理想的点接触结,即电子通过界面时受到的非弹性散射很弱.将Re3W样品置于大气环境近六个月后重新进行测量,仍然能够得到类似的结果,表明Re3W具有很好的稳定性.Re3W的这种优良特性,不仅可通过点接触实验得到的参数推算出Re3W两个相的费米速度,而且提供了一种简单的方法,可以在点接触实验中利用Re3W来印证针尖材料的费米速度和测量其自旋极化率等.作为尝试,本文用Re3W/Ni点接触结测量了铁磁性金属Ni的自旋极化率,得到了与前人报道一致的结果.
    Non-centrosymmetric superconductors have received considerable attention because of their possible possession of unconventional spin-triplet pairing.For this reason,the non-centrosymmetric Re3W with α -Mn structure has been widely concerned.However,almost all the previous studies support that the non-centrosymmetric phase of Re3W is a conventional weak-coupling s-wave superconductor.Later on,it is proved that Re3W has two different superconducting phases,one is the non-centrosymmetric phase and the other has a centrosymmetric hexagonal structure.Thus,a comparative study of these two superconducting phases could provide more information about the effect of non-centrosymmetric structure on the pairing symmetry of Re3W.
    In this paper,point-contact Andreev reflection experiments are carried out on Re3W/Au and the data can be well fitted by isotropic s-wave Blonder-Tinkham-Klapwijk (BTK) theory.In combination with our previous researches,we find that both centrosymmetric and non-centrosymmetric phases have similar temperature dependence of superconducting gap () with almost the same gap ratio of /Tc.These results present strong evidence that both phases of Re3W are weak coupling Bardeen-Cooper-Schrieffer superconductors.
    Another interesting finding is that both phases of Re3W could easily form an ideal point-contact junction (i.e.,inelastic scatterings at the interface can be ignored) with a normal metal tip.This is manifested as an extremely small broadening factor (Γ) used in the fitting process,and indicates a clean (and possibly transparent) interface.Keeping this in mind,we can assume that the effective barrier (Z) at the interface mainly comes from the mismatch between the Fermi velocity of the superconductor and that of the normal metal,which can be estimated from the formula Z2=(1-r)2/4r,where r is the ratio between those two Fermi velocities.From this formula,we can obtain the Fermi velocity of Re3W by using the known value of Au's Fermi velocity and the fitting parameter Z for the Re3W/Au point contacts.It is interesting to find that the chemical property of Re3W is stable in the atmospheric environment.Even if the samples are exposed to the atmospheric environment for nearly six months,the inelastic scatterings are still very weak,and the superconducting properties are unchanged.
    Such an exceptional performance of Re3W can be utilized to study the physical properties of its counter electrode in a point contact.As an attempt,we build a point contact between Re3W and a ferromagnetic Ni tip,and measure its Andreev reflection spectra which are then fitted with a modified BTK model by considering spin polarization.The determined spin polarization of Ni is in good agreement with previously reported result. Moreover,using the Fermi velocities of Re3W and Ni,we can calculate the effective barrier to be around 0.3 in the Re3W/Ni interface,which coincides with the fitting parameter Z.These results self-consistently demonstrate the validity of the determination of Re3W's Fermi velocity and the cleanness/transparency of the studied point-contact interface.
    [1]

    Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003

    [2]

    Gor'kov L P, Rashba E I 2001 Phys. Rev. Lett. 87 037004

    [3]

    Frigeri P A, Agterberg D F, Koga A, Sigrist M 2004 Phys. Rev. Lett. 92 097001

    [4]

    Bauer E, Sigrist M 2012 Non-Centrosymmetric Superconductors: Introduction and Overview (Berlin Heidelberg: Springer Verlag) pp4-5

    [5]

    Izawa K, Kasahara Y, Matsuda Y, Behnia K, Yasuda T, Settai R, Onuki Y 2005 Phys. Rev. Lett. 94 197002

    [6]

    Bonalde I, Brämer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002

    [7]

    Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, Salamon M B 2006 Phys. Rev. Lett. 97 017006

    [8]

    Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504

    [9]

    Chadov S, Qi X L, Kübler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [10]

    Blaugher R D, Hulm J K 1961 J. Phys. Chem. Solids 19 134

    [11]

    Blaugher R D, Taylor A, Hulm J K 1962 IBM J. Res. Dev. 6 116

    [12]

    Zuev Y L, Kuznetsova V A, Prozorov R, Vannette M D, Lobanov M V, Christen D K, Thompson J R 2007 Phys. Rev. B 76 132508

    [13]

    Huang Y, Yan J, Wang Y L, Shan L, Luo Q, Wang W H, Wen H H 2008 Supercond. Sci. Technol. 21 075011

    [14]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515

    [15]

    Biswas P K, Lees M R, Hillier A D, Smith R I, Marshall W G, Paul D M 2011 Phys. Rev. B 84 184529

    [16]

    Chu C W, McMillan W L, Luo H L 1971 Phys. Rev. B 3 3757

    [17]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [18]

    Dynes R C, Garno J P, Hertel G B, Orlando T P 1984 Phys. Rev. Lett. 53 2437

    [19]

    Plecenik A, Grajcar M, Beňačka Š, Seidel P, Pfuch A 1994 Phys. Rev. B 49 10016

    [20]

    Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [21]

    Nadgorny B, Soulen Jr R J, Osofsky M S, Mazin I I, Laprade G, van de Veerdonk R J M, Smits A A, Cheng S F, Skelton E F, Qadri S B 2000 Phys. Rev. B 61 3788

    [22]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585

    [23]

    Panguluri R P, Tsoi G, Nadgorny B, Chun S H, Samarth N, Mazin I I 2003 Phys. Rev. B 68 201307

    [24]

    Clowes S K, Miyoshi Y, Bugoslavsky Y, Branford W R, Grigorescu C, Manea S A, Monnereau O, Cohen L F 2004 Phys. Rev. B 69 214425

    [25]

    Biswas P K, Hillier A D, Lees M R, Paul D M 2012 Phys. Rev. B 85 134505

    [26]

    Daghero D, Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001

    [27]

    Gall D 2016 J. Appl. Phys. 119 85101

    [28]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576

    [29]

    Moodera J S, Mathon G 1999 J. Magn. Magn. Mater. 200 248

    [30]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510

  • [1]

    Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noël H, Sigrist M, Rogl P 2004 Phys. Rev. Lett. 92 027003

    [2]

    Gor'kov L P, Rashba E I 2001 Phys. Rev. Lett. 87 037004

    [3]

    Frigeri P A, Agterberg D F, Koga A, Sigrist M 2004 Phys. Rev. Lett. 92 097001

    [4]

    Bauer E, Sigrist M 2012 Non-Centrosymmetric Superconductors: Introduction and Overview (Berlin Heidelberg: Springer Verlag) pp4-5

    [5]

    Izawa K, Kasahara Y, Matsuda Y, Behnia K, Yasuda T, Settai R, Onuki Y 2005 Phys. Rev. Lett. 94 197002

    [6]

    Bonalde I, Brämer-Escamilla W, Bauer E 2005 Phys. Rev. Lett. 94 207002

    [7]

    Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M, Salamon M B 2006 Phys. Rev. Lett. 97 017006

    [8]

    Sato M, Fujimoto S 2009 Phys. Rev. B 79 094504

    [9]

    Chadov S, Qi X L, Kübler J, Fecher G H, Felser C, Zhang S C 2010 Nat. Mater. 9 541

    [10]

    Blaugher R D, Hulm J K 1961 J. Phys. Chem. Solids 19 134

    [11]

    Blaugher R D, Taylor A, Hulm J K 1962 IBM J. Res. Dev. 6 116

    [12]

    Zuev Y L, Kuznetsova V A, Prozorov R, Vannette M D, Lobanov M V, Christen D K, Thompson J R 2007 Phys. Rev. B 76 132508

    [13]

    Huang Y, Yan J, Wang Y L, Shan L, Luo Q, Wang W H, Wen H H 2008 Supercond. Sci. Technol. 21 075011

    [14]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515

    [15]

    Biswas P K, Lees M R, Hillier A D, Smith R I, Marshall W G, Paul D M 2011 Phys. Rev. B 84 184529

    [16]

    Chu C W, McMillan W L, Luo H L 1971 Phys. Rev. B 3 3757

    [17]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [18]

    Dynes R C, Garno J P, Hertel G B, Orlando T P 1984 Phys. Rev. Lett. 53 2437

    [19]

    Plecenik A, Grajcar M, Beňačka Š, Seidel P, Pfuch A 1994 Phys. Rev. B 49 10016

    [20]

    Soulen R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85

    [21]

    Nadgorny B, Soulen Jr R J, Osofsky M S, Mazin I I, Laprade G, van de Veerdonk R J M, Smits A A, Cheng S F, Skelton E F, Qadri S B 2000 Phys. Rev. B 61 3788

    [22]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585

    [23]

    Panguluri R P, Tsoi G, Nadgorny B, Chun S H, Samarth N, Mazin I I 2003 Phys. Rev. B 68 201307

    [24]

    Clowes S K, Miyoshi Y, Bugoslavsky Y, Branford W R, Grigorescu C, Manea S A, Monnereau O, Cohen L F 2004 Phys. Rev. B 69 214425

    [25]

    Biswas P K, Hillier A D, Lees M R, Paul D M 2012 Phys. Rev. B 85 134505

    [26]

    Daghero D, Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001

    [27]

    Gall D 2016 J. Appl. Phys. 119 85101

    [28]

    Mazin I I, Golubov A A, Nadgorny B 2001 J. Appl. Phys. 89 7576

    [29]

    Moodera J S, Mathon G 1999 J. Magn. Magn. Mater. 200 248

    [30]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510

  • [1] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [2] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应.  , 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [3] 于晓洋, 冯红磊, 辜刚旭, 刘永河, 李治林, 徐同帅, 李永庆. 层状铁磁体Fe0.26TaS2的Andreev反射谱.  , 2019, 68(24): 247201. doi: 10.7498/aps.68.20191221
    [4] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [5] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响.  , 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [6] 张警蕾, 焦琳, 庞贵明, 袁辉球. 非中心对称超导序参量研究.  , 2015, 64(21): 217403. doi: 10.7498/aps.64.217403
    [7] 王瑞琴, 宫箭, 武建英, 陈军. 对称双势垒量子阱中自旋极化输运的时间特性.  , 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [8] 何志刚, 程兴华, 龚敏, 蔡娟露, 石瑞英. 影响磁性pn结自旋极化输运特性的因素.  , 2010, 59(9): 6521-6526. doi: 10.7498/aps.59.6521
    [9] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运.  , 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [10] 李 政, 雒建林. 非中心对称超导体Mg10±δIr19B16?δ的超导电性研究.  , 2008, 57(7): 4508-4511. doi: 10.7498/aps.57.4508
    [11] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [12] 李统藏, 刘之景, 王克逸. 自旋极化电子从铁磁金属注入半导体时自旋极化的计算.  , 2003, 52(11): 2912-2917. doi: 10.7498/aps.52.2912
    [13] 余旻, 杨宏顺, 柴一晟, 阮可青, 李鹏程, 李志权, 陈兆甲, 曹烈兆. 电子型超导体Sm2-xCexCuO4(0.00≤x≤0.21)的异常热电势与电阻率.  , 2002, 51(3): 674-678. doi: 10.7498/aps.51.674
    [14] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究.  , 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [15] 杨湘波, 刘有延. Ni-Cr非中心对称准晶的电子性质.  , 1994, 43(3): 416-423. doi: 10.7498/aps.43.416
    [16] 郭旗, 任占梅, 廖常俊, 刘颂豪. 非中心对称介质构成的光波导中的孤子传输.  , 1992, 41(7): 1097-1105. doi: 10.7498/aps.41.1097
    [17] 丁尚武, 侯磊. 氧化物高温超导体的双极化子解释的可能性.  , 1988, 37(7): 1180-1182. doi: 10.7498/aps.37.1180
    [18] 汤蕙, 章立源. 具有—U中心的非简单金属与BCS超导体的邻近效应(Ⅱ).  , 1985, 34(1): 97-104. doi: 10.7498/aps.34.97
    [19] 章立源. 具有-U中心的非简单金属与BCS超导体的邻近效应(Ⅰ).  , 1983, 32(11): 1435-1442. doi: 10.7498/aps.32.1435
    [20] 范海福, 古元新, 许章保. 求解非中心对称晶体结构的人工相位退化法.  , 1981, 30(12): 1582-1585. doi: 10.7498/aps.30.1582
计量
  • 文章访问数:  7542
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2018-11-22
  • 刊出日期:  2019-01-05

/

返回文章
返回
Baidu
map