- 
				量子纠缠是一种重要的量子资源, 在多个空间分离的量子存储器间建立确定性的量子纠缠, 然后在用户控制的时刻将所存储的量子纠缠转移到量子信道中进行信息的分发和传送, 这对于实现量子信息网络是至关重要的. 本文介绍了用光学参量放大器制备与铷原子D1吸收线对应的非经典光场, 而且在三个空间分离的原子系综中确定性量子纠缠的产生、存储和转移. 利用电磁感应透明光和原子相互作用的原理, 将制备的多组分光场纠缠态模式映射到三个远距离的原子系综以建立原子自旋波之间的纠缠. 然后, 存储在原子系综中的纠缠态通过三个量子通道, 纠缠态的量子噪声被转移到三束空间分离的正交纠缠光场. 三束释放的光场间纠缠的存在验证了该系统具有保持多组分纠缠的能力. 这个方案实现了三个量子节点间的纠缠, 并且可以直接扩展到具有更多节点的量子网络, 为未来实现大型量子网络通信奠定了基础.Quantum entanglement is a significant quantum resource, which plays a central role in quantum communication. For realizing quantum information network, it is important to establish deterministic quantum entanglement among multiple spatial-separated quantum memories, and then the stored entanglement is transferred into the quantum channels for distributing and transmitting the quantum information at the user-control time. Firstly, we introduce the scheme of deterministic generation polarization squeezed state at 795 nm. A pair of quadrature amplitude squeezed optical fields are prepared by two degenerate optical parameter amplifiers pumped by a laser at 398 nm, and then the polarization squeezed state of light appears by combining the generated two quadrature amplitude squeezed optical beams on a polarizing beam splitter. Secondly, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The quadrature tripartite entangled states of light corresponding to the resonance with D1 line of rubidium atoms are transformed into the continuous-variable polarization entanglement via polarization beam splitter with three bright local optical beams. Finally, we propose the generation, storage and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. By the method of electromagnetically induced transparency light-matter interaction, the optical multiple entangled state is mapped into three distant atomic ensembles to build the entanglement among three atomic spin waves. Then, the quantum noise of entanglement stored in the atomic ensembles is transferred to the three space-seperated quadrature entangled light fields through three quantum channels. The existence of entanglement among the three released beams verifies that the system has the ability to maintain the multipartite entanglement. This protocol realizes the entanglement among three distant quantum nodes, and it can be extended to quantum network with more quantum nodes. All of these lay the foundation for realizing the large-scale quantum network communication in the future.- 
													Keywords:
													
- deterministic quantum entanglement /
- electromagnetically induced transparency /
- multipartite entanglement /
- quantum nodes
 [1] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777  Google Scholar Google Scholar[2] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575  Google Scholar Google Scholar[4] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706  Google Scholar Google Scholar[5] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401  Google Scholar Google Scholar[6] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891  Google Scholar Google Scholar[7] Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503  Google Scholar Google Scholar[8] Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501  Google Scholar Google Scholar[9] Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502  Google Scholar Google Scholar[10] Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903  Google Scholar Google Scholar[11] Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502  Google Scholar Google Scholar[12] Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504  Google Scholar Google Scholar[13] Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828  Google Scholar Google Scholar[14] Kimble H J 2008 Nature 453 1023  Google Scholar Google Scholar[15] Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492  Google Scholar Google Scholar[16] Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502  Google Scholar Google Scholar[17] Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174  Google Scholar Google Scholar[18] Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706  Google Scholar Google Scholar[19] Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003  Google Scholar Google Scholar[20] Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359  Google Scholar Google Scholar[21] Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525  Google Scholar Google Scholar[22] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190  Google Scholar Google Scholar[23] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262  Google Scholar Google Scholar[24] Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482  Google Scholar Google Scholar[25] Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37  Google Scholar Google Scholar[26] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601  Google Scholar Google Scholar[27] Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468  Google Scholar Google Scholar[28] Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313  Google Scholar Google Scholar[29] Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601  Google Scholar Google Scholar[30] Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503  Google Scholar Google Scholar[31] Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512  Google Scholar Google Scholar[32] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177  Google Scholar Google Scholar[33] Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426  Google Scholar Google Scholar[34] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413  Google Scholar Google Scholar[35] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828  Google Scholar Google Scholar[36] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098  Google Scholar Google Scholar[37] Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67  Google Scholar Google Scholar[38] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514  Google Scholar Google Scholar[39] Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412  Google Scholar Google Scholar[40] Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400  Google Scholar Google Scholar[41] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503  Google Scholar Google Scholar[42] Ou Z Y 2008 Phys. Rev. A 78 023819  Google Scholar Google Scholar[43] Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479  Google Scholar Google Scholar[44] Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715  Google Scholar Google Scholar[45] Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864  Google Scholar Google Scholar[46] Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773  Google Scholar Google Scholar[47] Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601  Google Scholar Google Scholar[48] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602  Google Scholar Google Scholar[49] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13  Google Scholar Google Scholar[50] Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718  Google Scholar Google Scholar[51] Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153  Google Scholar Google Scholar[52] Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020  Google Scholar Google Scholar[53] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 64 234210  Google Scholar Google ScholarSun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210  Google Scholar Google Scholar[54] 左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 67 134202  Google Scholar Google ScholarZuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202  Google Scholar Google Scholar[55] Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101  Google Scholar Google Scholar[56] 万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271  Google Scholar Google ScholarWan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271  Google Scholar Google Scholar[57] Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306  Google Scholar Google Scholar[58] Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502  Google Scholar Google Scholar[59] Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601  Google Scholar Google Scholar[60] Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601  Google Scholar Google Scholar[61] Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296  Google Scholar Google Scholar[62] Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601  Google Scholar Google Scholar[63] 闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 61 014206  Google Scholar Google ScholarYan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206  Google Scholar Google Scholar[64] Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604  Google Scholar Google Scholar[65] Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178  Google Scholar Google Scholar[66] Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139  Google Scholar Google Scholar[67] Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102  Google Scholar Google Scholar[68] Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337  Google Scholar Google Scholar[69] Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722  Google Scholar Google Scholar[70] Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601  Google Scholar Google Scholar[71] van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315  Google Scholar Google Scholar[72] Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103  Google Scholar Google Scholar[73] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633  Google Scholar Google Scholar[74] Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706  Google Scholar Google Scholar[75] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209  Google Scholar Google Scholar[76] Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041  Google Scholar Google Scholar[77] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33  Google Scholar Google Scholar[78] Wootton J R 2012 J. Mod. Opt. 59 1717  Google Scholar Google Scholar[79] Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519  Google Scholar Google Scholar[80] Northup T E, Blatt R 2014 Nat. Photon. 8 356  Google Scholar Google Scholar[81] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783  Google Scholar Google Scholar[82] Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314  Google Scholar Google Scholar[83] 邓瑞婕, 闫智辉, 贾晓军 2017 66 074201  Google Scholar Google ScholarDeng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201  Google Scholar Google Scholar[84] Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482  Google Scholar Google Scholar[85] Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601  Google Scholar Google Scholar[86] Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601  Google Scholar Google Scholar[87] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094  Google Scholar Google Scholar[88] 杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学) Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [89] Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602  Google Scholar Google Scholar[90] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502  Google Scholar Google Scholar[91] Simon R 2000 Phys. Rev. Lett. 84 2726  Google Scholar Google Scholar[92] 温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 67 024207  Google Scholar Google ScholarWen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207  Google Scholar Google Scholar[93] 吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001  Google Scholar Google ScholarWu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001  Google Scholar Google Scholar[94] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982  Google Scholar Google Scholar[95] Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109  Google Scholar Google Scholar[96] Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823  Google Scholar Google Scholar[97] Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601  Google Scholar Google Scholar[98] Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823  Google Scholar Google Scholar[99] Barrett S D 2010 New J. Phys. 12 093032  Google Scholar Google Scholar[100] Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502  Google Scholar Google Scholar[101] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517  Google Scholar Google Scholar[102] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381  Google Scholar Google Scholar[103] Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501  Google Scholar Google Scholar[104] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801  Google Scholar Google Scholar
- 
				
    
    
    图 2 Stokes分量(a) ${\hat S_0}$ , (b)${\hat S_1}$ , (c)${\hat S_2}$ , (d)${\hat S_3}$ 的量子噪声的实验测量(HWP, 二分之一波片; QWP, 四分之一波片; PBS, 偏振分束棱镜; +/−, 功率加法/减法器)Fig. 2. Measurement of quantum noise of Stokes component (a) ${\hat S_0}$ , (b)${\hat S_1}$ , (c)${\hat S_2}$ , (d)${\hat S_3}$ . HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; +/−, positive/negative power combiner.图 5 三组分偏振纠缠态产生方案(BS1, 光学分束器1; BS2, 光学分束器2; PBS1, 偏振分束棱镜1; PBS2, 偏振分束棱镜2; PBS3, 偏振分束棱镜3) Fig. 5. Schematic for the generation of tripartite polarization entangled state. BS1, beam splitter1; BS2, beam splitter2; PBS1, polarization beam splitter1; PBS2, polarization beam splitter2; PBS3, polarization beam splitter3. 图 6 分析频率在1—6 MHz间测量的Stokes关联方差 (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$ ; (b)${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$ ; (c)${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$ ; (d)${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$ ; (e)${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$ ; (f)${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$ Fig. 6. Measured correlation variances of (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$ , (b)${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$ , (c)${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$ , (d)${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$ , (e)${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$ , (f)${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$ over the analysis frequency rangefrom 1 to 6 MHz.表 1 释放光模正交分量不同组合的归一化关联方差 Table 1. Values of normalized correlation variances for different combinations. 不同组合的关联方差 输入模式/dB 原子自旋波/dB 释放模式/dB $\left\langle {{{\text{δ}}^2}({{\hat X}_2} - {{\hat X}_3})} \right\rangle $ −3.30 ± 0.05 −0.56 ± 0.03 −0.37 ± 0.03 $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_1} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $ −2.93 ± 0.05 −0.15 ± 0.02 −0.10 ± 0.02 $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_3})} \right\rangle $ −3.25 ± 0.05 −0.53 ± 0.03 −0.35 ± 0.03 $\left\langle {{{\text{δ}}^2}({{\hat P}_1} + {g_2}{{\hat P}_2} + {{\hat P}_3})} \right\rangle $ −2.91 ± 0.05 −0.15 ± 0.02 −0.10 ± 0.02 $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_2})} \right\rangle $ −3.25 ± 0.05 −0.52 ± 0.03 −0.34 ± 0.03 $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_2} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $ −2.90 ± 0.05 −0.14 ± 0.02 −0.09 ± 0.02 
- 
				
[1] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777  Google Scholar Google Scholar[2] Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513  Google Scholar Google Scholar[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575  Google Scholar Google Scholar[4] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706  Google Scholar Google Scholar[5] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401  Google Scholar Google Scholar[6] Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891  Google Scholar Google Scholar[7] Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503  Google Scholar Google Scholar[8] Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501  Google Scholar Google Scholar[9] Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502  Google Scholar Google Scholar[10] Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903  Google Scholar Google Scholar[11] Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502  Google Scholar Google Scholar[12] Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504  Google Scholar Google Scholar[13] Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828  Google Scholar Google Scholar[14] Kimble H J 2008 Nature 453 1023  Google Scholar Google Scholar[15] Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492  Google Scholar Google Scholar[16] Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502  Google Scholar Google Scholar[17] Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174  Google Scholar Google Scholar[18] Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706  Google Scholar Google Scholar[19] Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003  Google Scholar Google Scholar[20] Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359  Google Scholar Google Scholar[21] Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525  Google Scholar Google Scholar[22] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190  Google Scholar Google Scholar[23] Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262  Google Scholar Google Scholar[24] Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482  Google Scholar Google Scholar[25] Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37  Google Scholar Google Scholar[26] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601  Google Scholar Google Scholar[27] Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468  Google Scholar Google Scholar[28] Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313  Google Scholar Google Scholar[29] Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601  Google Scholar Google Scholar[30] Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503  Google Scholar Google Scholar[31] Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512  Google Scholar Google Scholar[32] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177  Google Scholar Google Scholar[33] Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426  Google Scholar Google Scholar[34] Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413  Google Scholar Google Scholar[35] Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828  Google Scholar Google Scholar[36] Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098  Google Scholar Google Scholar[37] Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67  Google Scholar Google Scholar[38] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514  Google Scholar Google Scholar[39] Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412  Google Scholar Google Scholar[40] Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400  Google Scholar Google Scholar[41] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503  Google Scholar Google Scholar[42] Ou Z Y 2008 Phys. Rev. A 78 023819  Google Scholar Google Scholar[43] Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479  Google Scholar Google Scholar[44] Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715  Google Scholar Google Scholar[45] Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864  Google Scholar Google Scholar[46] Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773  Google Scholar Google Scholar[47] Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601  Google Scholar Google Scholar[48] Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602  Google Scholar Google Scholar[49] Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13  Google Scholar Google Scholar[50] Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718  Google Scholar Google Scholar[51] Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153  Google Scholar Google Scholar[52] Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020  Google Scholar Google Scholar[53] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 64 234210  Google Scholar Google ScholarSun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210  Google Scholar Google Scholar[54] 左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 67 134202  Google Scholar Google ScholarZuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202  Google Scholar Google Scholar[55] Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101  Google Scholar Google Scholar[56] 万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271  Google Scholar Google ScholarWan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271  Google Scholar Google Scholar[57] Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306  Google Scholar Google Scholar[58] Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502  Google Scholar Google Scholar[59] Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601  Google Scholar Google Scholar[60] Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601  Google Scholar Google Scholar[61] Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296  Google Scholar Google Scholar[62] Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601  Google Scholar Google Scholar[63] 闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 61 014206  Google Scholar Google ScholarYan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206  Google Scholar Google Scholar[64] Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604  Google Scholar Google Scholar[65] Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178  Google Scholar Google Scholar[66] Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139  Google Scholar Google Scholar[67] Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102  Google Scholar Google Scholar[68] Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337  Google Scholar Google Scholar[69] Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722  Google Scholar Google Scholar[70] Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601  Google Scholar Google Scholar[71] van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315  Google Scholar Google Scholar[72] Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103  Google Scholar Google Scholar[73] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633  Google Scholar Google Scholar[74] Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706  Google Scholar Google Scholar[75] Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209  Google Scholar Google Scholar[76] Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041  Google Scholar Google Scholar[77] Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33  Google Scholar Google Scholar[78] Wootton J R 2012 J. Mod. Opt. 59 1717  Google Scholar Google Scholar[79] Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519  Google Scholar Google Scholar[80] Northup T E, Blatt R 2014 Nat. Photon. 8 356  Google Scholar Google Scholar[81] Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783  Google Scholar Google Scholar[82] Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314  Google Scholar Google Scholar[83] 邓瑞婕, 闫智辉, 贾晓军 2017 66 074201  Google Scholar Google ScholarDeng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201  Google Scholar Google Scholar[84] Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482  Google Scholar Google Scholar[85] Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601  Google Scholar Google Scholar[86] Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601  Google Scholar Google Scholar[87] Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094  Google Scholar Google Scholar[88] 杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学) Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [89] Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602  Google Scholar Google Scholar[90] Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502  Google Scholar Google Scholar[91] Simon R 2000 Phys. Rev. Lett. 84 2726  Google Scholar Google Scholar[92] 温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 67 024207  Google Scholar Google ScholarWen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207  Google Scholar Google Scholar[93] 吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001  Google Scholar Google ScholarWu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001  Google Scholar Google Scholar[94] Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982  Google Scholar Google Scholar[95] Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109  Google Scholar Google Scholar[96] Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823  Google Scholar Google Scholar[97] Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601  Google Scholar Google Scholar[98] Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823  Google Scholar Google Scholar[99] Barrett S D 2010 New J. Phys. 12 093032  Google Scholar Google Scholar[100] Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502  Google Scholar Google Scholar[101] Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517  Google Scholar Google Scholar[102] Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381  Google Scholar Google Scholar[103] Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501  Google Scholar Google Scholar[104] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801  Google Scholar Google Scholar
计量
- 文章访问数: 20169
- PDF下载量: 179
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							







 
							







 
							 
							 
							











 
							 
							 
							 
							