搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米线表面等离激元波导的能量损耗

王文慧 张孬

引用本文:
Citation:

银纳米线表面等离激元波导的能量损耗

王文慧, 张孬

Energy loss of surface plasmon polaritons on Ag nanowire waveguide

Wang Wen-Hui, Zhang Nao
PDF
导出引用
  • 金属纳米结构的表面等离激元可以突破光学衍射极限,为光子器件的微型化和集成光学芯片的实现奠定基础.基于表面等离激元的各种基本光学元件已经研制出来.然而,由于金属结构的固有欧姆损耗以及向衬底的辐射损耗等,表面等离激元的传输能量损耗较大,极大地制约了其在纳米光子器件和回路中的应用.研究能量损耗的影响因素以及如何有效降低能量损耗对未来光子器件的实际应用具有重要意义.本文从纳米线表面等离激元的基本模式出发,介绍了它在不同条件下的场分布和传输特性,在此基础上着重讨论纳米线表面等离激元传输损耗的影响因素和测量方法以及目前常用的降低传输损耗的思路.最后给出总结以及如何进一步降低能量损耗方法的展望.表面等离激元能量损耗的相关研究对于纳米光子器件的设计和集成光子回路的构建有着重要作用.
    Metal nanostructures can support surface plasmon polaritons (SPPs) propagating beyond diffraction limit, which enables the miniaturizing of optical devices and the integrating of on-chip photonic and electronic circuits. Various surface plasmon based optical components have already been developed such as plasmonic routers, detectors, logic gates, etc. However, the high energy losses associated with SPPs' propagation have largely hampered their applications in nanophotonic devices and circuits. Developing the methods of effectively reducing energy loss is significant in this field. In this review, we mainly focus on the energy losses when SPPs propagate in Ag nanowires (NWs). Researches on energy loss mechanism, measurement approaches and methods of reducing energy loss have been reviewed. Owing to their good morphology and high crystallinity as well as low loss in visible spectrum, chemically synthesized Ag NWs are a promising candidate for plasmonic waveguides. The energy losses mainly arise from inherent Ohmic damping, scattering process, leaky radiation and absorption of substrate. These processes can be influenced by excitation wavelength, the geometry of NW and the dielectric environment, especially the effect of substrate, which is discussed in the review. Longer excitation wavelength and larger NW diameter can induce decreased mode confinements and smaller Ohmic loss. The experimental methods to measure the energy loss have been summarized. Researches on reducing energy loss have been reviewed including applying dielectric layer or graphene between NW and substrate, replacing commonly used substrate with a dielectric multilayer substrate, introducing gain materials, and forming hybrid waveguides by using the semiconductor or dielectric NW. Specifically, the leaky radiation can be prevented when an appropriate dielectric layer is placed between NW and substrate, and the mode confinement can be reduced which leads to decreased Ohmic loss. The gain materials can be used to compensate for the energy loss during propagation. Compared with metal waveguides, semiconductor or dielectric NWs suffer lower energy losses while decreased field confinement. Then the hybrid waveguides constructed by metal and dielectric NWs can combine their advantages, which possesses reduced propagation loss. In addition, the plasmon modes in NWs in a homogeneous medium and a substrate are briefly discussed respectively, followed by the introduction to fundamental properties of SPPs propagation. Finally, perspectives of the future development of reducing energy loss are given. The researches on reducing energy loss are crucial for designing and fabricating the nanophotonic devices and integrated optical circuits.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [5]

    Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L 2005 MRS Bull. 30 385

    [6]

    Economou E N 1969 Phys. Rev. 182 539

    [7]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [8]

    Maier S A, Friedman M D, Barclay P E, Painter O 2005 Appl. Phys. Lett. 86 071103

    [9]

    Qu D X, Grischkowsky D 2004 Phys. Rev. Lett. 93 196804

    [10]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [11]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [12]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [13]

    Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263

    [14]

    Krenn J R, Weeber J C 2004 Philos. Trans. R. Soc. London Ser. A 362 739

    [15]

    Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A 2006 Nano Lett. 6 1822

    [16]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472

    [17]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383

    [18]

    Li Z, Bao K, Fang Y, Huang Y, Nordlander P, Xu H 2010 Nano Lett. 10 1831

    [19]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801

    [20]

    Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J, Xu H 2011 Nano Lett. 11 471

    [21]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560

    [22]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950

    [23]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [24]

    Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning C Z, Tong L 2013 Nano Lett. 13 5654

    [25]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N d L, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [26]

    Goodfellow K M, Chakraborty C, Beams R, Novotny L, Vamiyakas A N 2015 Nano Lett. 15 5477

    [27]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882

    [28]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801

    [29]

    Wang Y, Ma Y, Guo X, Tong L 2012 Opt. Express 20 19006

    [30]

    Zhang S H, Jiang Z Y, Xie Z X, Xu X, Huang R B, Zheng L S 2005 J. Phys. Chem. B 109 9416

    [31]

    Staleva H, Skrabalak S E, Carey C R, Kosel T, Xia Y, Hartland G V 2009 Phys. Chem. Chem. Phys. 11 5889

    [32]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J 11 454

    [33]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60

    [34]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [35]

    Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [36]

    Pan D, Wei H, Jia Z, Xu H 2014 Sci. Rep. 4 4993

    [37]

    Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803

    [38]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [39]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402

    [40]

    Zhang S, Xu H 2012 ACS Nano 6 8128

    [41]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053

    [42]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [43]

    Oulton R F, Bartal G, Pile D F P, Zhang X 2008 New J. Phys. 10 105018

    [44]

    Song Y, Yan M, Yang Q, Tong L M, Qiu M 2011 Opt. Commun. 284 480

    [45]

    Jia Z, Wei H, Pan D, Xu H 2016 Nanoscale 8 20118

    [46]

    Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q 2010 Opt. Lett. 35 1160

    [47]

    Hua J, Wu F, Fan F, Wang W, Xu Z, Li F 2016 J. Phys.: Condens. Matter 28 254005

    [48]

    Kusar P, Gruber C, Hohenau A, Krenn J R 2012 Nano Lett. 12 661

    [49]

    Wu F, Wang W, Hua J, Xu Z, Li F 2016 Sci. Rep. 6 37512

    [50]

    Hua J, Wu F, Xu Z, Wang W 2016 Sci. Rep. 6 34418

    [51]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [52]

    Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H 2013 Sci. Rep. 3 1967

    [53]

    Wang W, Yang Q, Fan F, Xu H, Wang Z L 2011 Nano Lett. 11 1603

    [54]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [55]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494

    [56]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys. Lett. 60 663

    [57]

    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B 2009 Nano Lett. 9 2553

    [58]

    Dorfmueller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372

    [59]

    Li X, Guo X, Wang D, Tong L 2014 Opt. Commun. 323 119

    [60]

    Wang W, Zhou W, Fu T, Wu F, Zhang N, Li Q, Xu Z, Liu W 2018 Nano Energy 48 197

    [61]

    Meng X, Zhu W, Li H, Zhai C, Zhang W 2018 Opt. Commun. 423 152

    [62]

    Zhang D, Xiang Y, Chen J, Cheng J, Zhu L, Wang R, Zou G, Wang P, Ming H, Rosenfeld M, Badugu R, Lakowicz J R 2018 Nano Lett. 18 1152

    [63]

    Paul A, Zhen Y R, Wang Y, Chang W S, Xia Y, Nordlander P, Link S 2014 Nano Lett. 14 3628

    [64]

    Li Y J, Xiong X, Zou C L, Ren X F, Zhao Y S 2015 Small 11 3728

    [65]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515

    [66]

    Li Y J, Yan Y, Zhang C, Zhao Y S, Yao J 2013 Adv. Mater. 25 2784

    [67]

    Yan Y, Zhang C, Zheng J Y, Yao J, Zhao Y S 2012 Adv. Mater. 24 5681

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [5]

    Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L 2005 MRS Bull. 30 385

    [6]

    Economou E N 1969 Phys. Rev. 182 539

    [7]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [8]

    Maier S A, Friedman M D, Barclay P E, Painter O 2005 Appl. Phys. Lett. 86 071103

    [9]

    Qu D X, Grischkowsky D 2004 Phys. Rev. Lett. 93 196804

    [10]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [11]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [12]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [13]

    Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263

    [14]

    Krenn J R, Weeber J C 2004 Philos. Trans. R. Soc. London Ser. A 362 739

    [15]

    Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A 2006 Nano Lett. 6 1822

    [16]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472

    [17]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383

    [18]

    Li Z, Bao K, Fang Y, Huang Y, Nordlander P, Xu H 2010 Nano Lett. 10 1831

    [19]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801

    [20]

    Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J, Xu H 2011 Nano Lett. 11 471

    [21]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560

    [22]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950

    [23]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [24]

    Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning C Z, Tong L 2013 Nano Lett. 13 5654

    [25]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N d L, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [26]

    Goodfellow K M, Chakraborty C, Beams R, Novotny L, Vamiyakas A N 2015 Nano Lett. 15 5477

    [27]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882

    [28]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801

    [29]

    Wang Y, Ma Y, Guo X, Tong L 2012 Opt. Express 20 19006

    [30]

    Zhang S H, Jiang Z Y, Xie Z X, Xu X, Huang R B, Zheng L S 2005 J. Phys. Chem. B 109 9416

    [31]

    Staleva H, Skrabalak S E, Carey C R, Kosel T, Xia Y, Hartland G V 2009 Phys. Chem. Chem. Phys. 11 5889

    [32]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J 11 454

    [33]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60

    [34]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [35]

    Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [36]

    Pan D, Wei H, Jia Z, Xu H 2014 Sci. Rep. 4 4993

    [37]

    Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803

    [38]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [39]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402

    [40]

    Zhang S, Xu H 2012 ACS Nano 6 8128

    [41]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053

    [42]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [43]

    Oulton R F, Bartal G, Pile D F P, Zhang X 2008 New J. Phys. 10 105018

    [44]

    Song Y, Yan M, Yang Q, Tong L M, Qiu M 2011 Opt. Commun. 284 480

    [45]

    Jia Z, Wei H, Pan D, Xu H 2016 Nanoscale 8 20118

    [46]

    Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q 2010 Opt. Lett. 35 1160

    [47]

    Hua J, Wu F, Fan F, Wang W, Xu Z, Li F 2016 J. Phys.: Condens. Matter 28 254005

    [48]

    Kusar P, Gruber C, Hohenau A, Krenn J R 2012 Nano Lett. 12 661

    [49]

    Wu F, Wang W, Hua J, Xu Z, Li F 2016 Sci. Rep. 6 37512

    [50]

    Hua J, Wu F, Xu Z, Wang W 2016 Sci. Rep. 6 34418

    [51]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [52]

    Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H 2013 Sci. Rep. 3 1967

    [53]

    Wang W, Yang Q, Fan F, Xu H, Wang Z L 2011 Nano Lett. 11 1603

    [54]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [55]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494

    [56]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys. Lett. 60 663

    [57]

    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B 2009 Nano Lett. 9 2553

    [58]

    Dorfmueller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372

    [59]

    Li X, Guo X, Wang D, Tong L 2014 Opt. Commun. 323 119

    [60]

    Wang W, Zhou W, Fu T, Wu F, Zhang N, Li Q, Xu Z, Liu W 2018 Nano Energy 48 197

    [61]

    Meng X, Zhu W, Li H, Zhai C, Zhang W 2018 Opt. Commun. 423 152

    [62]

    Zhang D, Xiang Y, Chen J, Cheng J, Zhu L, Wang R, Zou G, Wang P, Ming H, Rosenfeld M, Badugu R, Lakowicz J R 2018 Nano Lett. 18 1152

    [63]

    Paul A, Zhen Y R, Wang Y, Chang W S, Xia Y, Nordlander P, Link S 2014 Nano Lett. 14 3628

    [64]

    Li Y J, Xiong X, Zou C L, Ren X F, Zhao Y S 2015 Small 11 3728

    [65]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515

    [66]

    Li Y J, Yan Y, Zhang C, Zhao Y S, Yao J 2013 Adv. Mater. 25 2784

    [67]

    Yan Y, Zhang C, Zheng J Y, Yao J, Zhao Y S 2012 Adv. Mater. 24 5681

  • [1] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟.  , 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [2] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合.  , 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型.  , 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器.  , 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应.  , 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制.  , 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控.  , 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [11] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展.  , 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [12] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究.  , 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [13] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [14] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究.  , 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [15] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究.  , 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [16] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器.  , 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究.  , 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究.  , 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [19] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究.  , 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响.  , 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
计量
  • 文章访问数:  7955
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-23
  • 修回日期:  2018-11-29
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map