搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯与金属的欧姆接触理论研究

蒲晓庆 吴静 郭强 蔡建臻

引用本文:
Citation:

石墨烯与金属的欧姆接触理论研究

蒲晓庆, 吴静, 郭强, 蔡建臻

Theoretical study on ohmic contact between graphene and metal electrode

Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen
PDF
导出引用
  • 石墨烯材料应用于多种电子器件时不可避免地要与金属电极接触,它们之间的接触电阻直接影响了器件的性能.为了揭示影响金属电极与石墨烯间接触电阻的因素,提出有效地抑制这些影响的措施,本文建立了一种求解接触电阻的物理模型,将载流子的输运分为金属与正下方石墨烯之间、正下方石墨烯与邻近石墨烯之间的两个过程,分别研究各个过程的输运概率;结合金属电极与石墨烯接触对载流子分布的影响分析接触电阻,据此分别探讨了金属电极材料、栅极电压、掺杂浓度、金属与石墨烯原子距离等对接触电阻的影响.为验证理论分析结果的正确性,制作了金与石墨烯接触的实验样品,实验测得的接触电阻与理论分析结果符合.理论分析结果表明,可通过选择与石墨烯功函数接近的金属材料,降低二氧化硅层厚度,增加载流子平均自由程,改进金属材料的表面形态使其更光滑,减小金属与石墨烯耦合长度等方法降低石墨烯与金属电极的接触电阻.
    Graphene has excellent electrical, optical, thermal and mechanical properties, so it has been used in high-performance field effect transistors, sensors, optoelectronic devices, and quantized devices. It is crucial to realize a high-quality junction between metal electrode and graphene. For example, in the field of electrical measurement, due only to the contact resistance in a proper order of magnitude, the quantum Hall effect can be realized. The lower the contact resistance, the higher the measurement accuracy of Hall resistance is. In order to reveal the factors affecting the contact resistance we propose an effective method to reduce it, and a physical model is established in this paper. The carrier transport between the metal electrode and graphene is divided into two cascaded processes. Carriers first transport from the metal electrode to the graphene underneath it, then transport between the graphene underneath metal and the adjacent graphene. The transport probability of first step is considered through the effective coupling length and the mean free path. The transport probability of second step is considered through the effective length of potential step change between the graphene under the metal and the adjacent graphene. The contact resistance is analyzed by combining the distribution of carriers. In order to verify the correctness of the theoretical results, an experimental sample with gold as the metal electrode is fabricated. The transport line model is used to measure the contact resistance. The length of contact area is 4 μm. The lengths of graphene channel are set to be 2, 4, 6, 8, and 10 μm, respectively. The current values are set to be 10, 20, 40, 60, and 80 μA, respectively. The results show that the relationship between current and voltage is almost linear. The total resistance can be obtained with different lengths of graphene. According to the transmission line model, the resistance value can be estimated as (160±30) Ω when the graphene length is zero. Considering that the measured result is obtained under two metal electrodes contacting the graphene, the contact resistance of experimental result is (320±30) Ω·μm which agrees well with the theoretical result. From the analysis of theoretical process, the factors that affect the contact resistance is determined by material, drain-source voltage, gate voltage, doping concentration, distance between metal electrode and graphene atoms, distance between graphene and gate. Finally, in order to reduce the contact resistance between graphene and metal electrode, we propose some corresponding solutions for choosing the metal material whose work function is close to graphene's, reducing the thickness of the silicon dioxide layer, increasing carrier mean free path, improving the surface morphology of the metal material, and reducing the coupling length between metal and graphene.
      通信作者: 吴静, wujing06@buaa.edu.cn
    • 基金项目: 国防基础科学研究计划(批准号:JSJL2016601C001)资助的课题.
      Corresponding author: Wu Jing, wujing06@buaa.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. JSJL2016601C001).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firrsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [3]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [4]

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102 (in Chinese)[武佩, 胡潇, 张健, 孙连峰 2017 66 218102]

    [5]

    Avouris P, Xia F 2012 MRS Bull. 37 1225

    [6]

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501 (in Chinese)[黄乐, 张志勇, 彭练矛 2017 66 218501]

    [7]

    Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Fal'ko V I 2013 Rep. Prog. Phys. 76 104501

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'ko V, Kubatkin S 2010 Nature Nanotech. 5 186

    [10]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [11]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [12]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Brink G V D, Kelly P J 2009 Phys. Rev. B 79 195425

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

    [16]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845

    [17]

    Chaves F A, Jimenez D, Cummings A W, Stephan R 2014 J. Appl. Phys. 115 164513

    [18]

    Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P 2011 Nature Nanotech. 6 179

    [19]

    Datta S 1995 Electronics in Mesoscopic Systems (Cambridge: Cambridge University Press) pp57-65

    [20]

    Matthiessen A 1858 Philos. Trans. R. Soc. London 148 383

    [21]

    Cayssol J, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firrsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nature Mater. 6 183

    [3]

    Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178

    [4]

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102 (in Chinese)[武佩, 胡潇, 张健, 孙连峰 2017 66 218102]

    [5]

    Avouris P, Xia F 2012 MRS Bull. 37 1225

    [6]

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501 (in Chinese)[黄乐, 张志勇, 彭练矛 2017 66 218501]

    [7]

    Janssen T J B M, Tzalenchuk A, Lara-Avila S, Kubatkin S, Fal'ko V I 2013 Rep. Prog. Phys. 76 104501

    [8]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [9]

    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen T J B M, Fal'ko V, Kubatkin S 2010 Nature Nanotech. 5 186

    [10]

    Xia F, Mueller T, Golizadeh-Mojarad R 2009 Nano Lett. 9 1039

    [11]

    Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J 2008 Adv. Funct. Mater. 18 1518

    [12]

    An X, Liu F, Jung Y J, Kar S 2013 Nano Lett. 13 909

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, Brink G V D, Kelly P J 2009 Phys. Rev. B 79 195425

    [15]

    Matsuda Y, Deng W Q, Goddard W A 2007 J. Phys. Chem. C 111 11113

    [16]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845

    [17]

    Chaves F A, Jimenez D, Cummings A W, Stephan R 2014 J. Appl. Phys. 115 164513

    [18]

    Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P 2011 Nature Nanotech. 6 179

    [19]

    Datta S 1995 Electronics in Mesoscopic Systems (Cambridge: Cambridge University Press) pp57-65

    [20]

    Matthiessen A 1858 Philos. Trans. R. Soc. London 148 383

    [21]

    Cayssol J, Huard B, Goldhaber-Gordon D 2009 Phys. Rev. B 79 075428

  • [1] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响.  , 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究.  , 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [4] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性.  , 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [5] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化.  , 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [6] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展.  , 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [7] 秦志辉. 类石墨烯锗烯研究进展.  , 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [8] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] 张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究.  , 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [10] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻.  , 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [11] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [12] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [15] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [16] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质.  , 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [17] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能.  , 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [18] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响.  , 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [19] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究.  , 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [20] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究.  , 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
计量
  • 文章访问数:  9518
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2018-08-27
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map