搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速飞行器磁控阻力特性

姚霄 刘伟强 谭建国

引用本文:
Citation:

高速飞行器磁控阻力特性

姚霄, 刘伟强, 谭建国

Analysis of magnetohydrodynamic drag character for hypersonic vehicles

Yao Xiao, Liu Wei-Qiang, Tan Jian-Guo
PDF
导出引用
  • 采用低磁雷诺数磁流体数学模型,对外加磁场下的高超声速半球体流场进行数值模拟.选取三种简单理想磁场(轴向、径向、周向均布磁场),分析了不同磁场类型对流场结构、气动阻力与洛伦兹阻力的影响及作用机理.研究发现,轴向磁场径向“挤压”效应使得激波外形凸出,且壁面静压存在“饱和现象”;径向磁场存在轴向“外推”效应,较大的磁场强度会导致肩部形成高温区;周向磁场下感应电场的存在导致增阻效果很差.进而对比了两种相同驻点磁感应强度特殊分布磁场(偶极子磁场、螺线管磁场)下的流场,发现了不同于理想磁场的径向“扩张”效应.按增阻效果从大到小依次为径向磁场、螺线管磁场、轴向磁场、偶极子磁场、周向磁场.
    In hypersonic flight, a very high temperature area can form ahead of the nose of aerocraft due to the shock aerodynamic heating, which leads to air weakly ionized. Many researchers have demonstrated that it is effective to control flow by utilizing the interaction between weakly ionized air and a magnetic field. Most of previous researches focus on magnetohydrodynamic (MHD) heat shield, because the Lorentz force can increase the shock stand-off distance, further reduce convective heat flux. In this study, the MHD force effect is mainly considered, and the MHD drag characters under different types of magnetic field are discussed.The numerical simulation of hypersonic hemispherical flow field with external magnetic field is carried out by using a low magnetic-Reynolds MHD model. Three kinds of simple ideal magnetic fields (axial, radial and circle uniformly distributed magnetic field) are compared and analyzed. The influence and mechanism of the structure of the flow field, the aerodynamic drag and the Lorentz resistance of different magnetic fields are analyzed. It is found that under the radial ‘extrusion’ effect of the axial magnetic field, the shock wave shape is protruded and a ‘saturation phenomenon’ of pressure exists on the wall; the radial magnetic field has the axial ‘extrusion’ effect, the larger magnetic field intensity will lead to the formation of the high temperature area of the shoulder, and the induced electric field in the circle magnetic field leads to the poor effect of increasing resistance. Then the flow fields of two special magnetic fields (dipole magnetic field and solenoid magnetic field) are compared, and the radial ‘dilatation’ effect is found to be different from the ideal magnetic field. Compared with the Lorentz force under the different magnetic fields, the Lorentz force in the radial magnetic field is found to be concentrated in the high temperature area of the shoulder, and the Lorentz force is generally small under the circle magnetic field. The direction near the standing point will have an adverse effect, i.e., the resistance increases. In the specially distributed magnetic field, the direction of Lorentz force near the shoulder is approximately parallel to that of the shoulder, while the direction near the standing point is approximately perpendicular to the axis. Compared with the dipole magnetic field, the solenoid magnetic field with high Lorentz force region is close to the shoulder, so it will have good resistance enhancement effect. The influence of the dipole magnetic field on the wall pressure is weak. The effect of increasing resistance, caused by the magnetic field induced electric field, evolves from weak to strong in the following sequence:radial magnetic field, solenoid magnetic field, axial magnetic field, dipole magnetic field and circle magnetic field.
      通信作者: 姚霄, 1005490693@qq.com
      Corresponding author: Yao Xiao, 1005490693@qq.com
    [1]

    Li G J, Zhang W R, Yin Y S, Cheng Z Q 2004 Ceramics 2 28 (in Chinese)[李贵佳, 张伟儒, 尹衍升, 程之强 2004 陶瓷 2 28]

    [2]

    Lu H B, Liu W Q 2012 Acta Phys. Sin. 61 064703 (in Chinese)[陆海波, 刘伟强 2012 61 064703]

    [3]

    Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 2013101122957[2015-04-15] (in Chinese)[刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利 ZL 2013101122957]

    [4]

    Yang X W, Liao Y B, Zhang D Y 2007 J. Exper. Fluid Mech. 21 49 (in Chinese)[杨贤文, 廖翼兵, 张德宇 2007 实验流体力学 21 49]

    [5]

    Zhao Z H 1995 Spacecraft Recovery 16 13 (in Chinese)[赵祖虎 1995 航天返回与遥感 16 13]

    [6]

    Shimosawa Y, Fujino T 2016 J. Spacecraft Rockets 53 1

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, CA, June 24-27, 2013 p3000

    [8]

    Bityurin V A, Bocharov A N 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition Orlando, Florida, January 5-8, 2009 p1230

    [9]

    Sheikin E G 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2007 p1379

    [10]

    Sheikin E G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4-7, 2010 p832

    [11]

    Shang J S, Surzhikov S T, Kimmel R, Gaitonde D, Menart J, Hayes J 2005 Prog. Aerosp. Sci. 41 642

    [12]

    Li K, Liu W Q 2016 J. NUDT 38 02025 (in Chinese)[李开, 刘伟强 2016 国防科技大学学报 38 02025]

    [13]

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese)[李开, 刘伟强 2016 65 064701]

    [14]

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702 (in Chinese)[李开, 柳军, 刘伟强 2017 66 084702]

    [15]

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701 (in Chinese)[李开, 柳军, 刘伟强 2017 66 054701]

    [16]

    Masuda K, Shimosawa Y, Fujino T 2015 6th AIAA Plasmadynamics and Lasers Conference Dallas, TX, June 22-26, 2015 p3366

    [17]

    Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China:Tech. Sci. 43 1242 (in Chinese)[张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学43 1242]

    [18]

    Ding C Y 2014 M. S. Thesis (Harbin:Harbin Institute of Technology) (in Chinese)[丁朝阳 2014 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [19]

    Liu Q 2013 M. S. Thesis (Harbin:Harbin Institute of Technology) (in Chinese)[刘强 2013 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [20]

    Raizer Y P 1991 Gas Discharge Physics (New York:Springer-Verlag) p281

  • [1]

    Li G J, Zhang W R, Yin Y S, Cheng Z Q 2004 Ceramics 2 28 (in Chinese)[李贵佳, 张伟儒, 尹衍升, 程之强 2004 陶瓷 2 28]

    [2]

    Lu H B, Liu W Q 2012 Acta Phys. Sin. 61 064703 (in Chinese)[陆海波, 刘伟强 2012 61 064703]

    [3]

    Liu W Q, Nie T, Sun J, Lu H B, Rong Y S, Liu H P, Xie L Y 2013 China Patent ZL 2013101122957[2015-04-15] (in Chinese)[刘伟强, 聂涛, 孙健, 陆海波, 戎宜生, 刘洪鹏, 谢伦娅 2013 国家发明专利 ZL 2013101122957]

    [4]

    Yang X W, Liao Y B, Zhang D Y 2007 J. Exper. Fluid Mech. 21 49 (in Chinese)[杨贤文, 廖翼兵, 张德宇 2007 实验流体力学 21 49]

    [5]

    Zhao Z H 1995 Spacecraft Recovery 16 13 (in Chinese)[赵祖虎 1995 航天返回与遥感 16 13]

    [6]

    Shimosawa Y, Fujino T 2016 J. Spacecraft Rockets 53 1

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, CA, June 24-27, 2013 p3000

    [8]

    Bityurin V A, Bocharov A N 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition Orlando, Florida, January 5-8, 2009 p1230

    [9]

    Sheikin E G 2007 45th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2007 p1379

    [10]

    Sheikin E G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4-7, 2010 p832

    [11]

    Shang J S, Surzhikov S T, Kimmel R, Gaitonde D, Menart J, Hayes J 2005 Prog. Aerosp. Sci. 41 642

    [12]

    Li K, Liu W Q 2016 J. NUDT 38 02025 (in Chinese)[李开, 刘伟强 2016 国防科技大学学报 38 02025]

    [13]

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese)[李开, 刘伟强 2016 65 064701]

    [14]

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702 (in Chinese)[李开, 柳军, 刘伟强 2017 66 084702]

    [15]

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701 (in Chinese)[李开, 柳军, 刘伟强 2017 66 054701]

    [16]

    Masuda K, Shimosawa Y, Fujino T 2015 6th AIAA Plasmadynamics and Lasers Conference Dallas, TX, June 22-26, 2015 p3366

    [17]

    Zhang S H, Zhao H, Du A M, Cao X 2013 Sci. China:Tech. Sci. 43 1242 (in Chinese)[张绍华, 赵华, 杜爱民, 曹馨 2013 中国科学:技术科学43 1242]

    [18]

    Ding C Y 2014 M. S. Thesis (Harbin:Harbin Institute of Technology) (in Chinese)[丁朝阳 2014 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [19]

    Liu Q 2013 M. S. Thesis (Harbin:Harbin Institute of Technology) (in Chinese)[刘强 2013 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [20]

    Raizer Y P 1991 Gas Discharge Physics (New York:Springer-Verlag) p281

  • [1] 张天成, 成爱强, 包华广, 丁大志. 静态强磁场对临近空间飞行器中天线辐射性能的影响.  , 2022, 71(8): 085202. doi: 10.7498/aps.71.20212044
    [2] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用.  , 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [3] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究.  , 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [4] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性.  , 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [6] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [7] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析.  , 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [8] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性.  , 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [9] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [10] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性.  , 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [11] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器.  , 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [12] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响.  , 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [13] 李开, 柳军, 刘伟强. 高超声速飞行器磁控热防护霍尔电场数值方法研究.  , 2017, 66(8): 084702. doi: 10.7498/aps.66.084702
    [14] 李开, 刘伟强. 高超声速飞行器磁控热防护系统建模分析.  , 2016, 65(6): 064701. doi: 10.7498/aps.65.064701
    [15] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [16] 刘宗凯, 顾金良, 周本谋, 纪延亮, 黄亚冬, 徐驰. 基于回转体型艇身的电磁流体表面推进与矢量控制特性研究.  , 2014, 63(7): 074704. doi: 10.7498/aps.63.074704
    [17] 孙健, 刘伟强. 高超声速飞行器前缘疏导式热防护结构的实验研究.  , 2014, 63(9): 094401. doi: 10.7498/aps.63.094401
    [18] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究.  , 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [19] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析.  , 2013, 62(7): 074401. doi: 10.7498/aps.62.074401
    [20] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
计量
  • 文章访问数:  6816
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map