-
为了增强临近空间超高声速飞行器中的北斗天线的辐射性能, 采用了施加静态强磁场削弱特定区域等离子体电子密度的方案, 开展多物理场时域建模分析方法研究. 首先利用具有谱精度的时域谱元(SETD)法对静态强磁场作用下等离子鞘套中北斗天线周围电子浓度的削减程度进行分析, 再利用共形时域有限差分(CFDTD)方法对临近空间高超声速飞行器的北斗天线辐射特性进行建模仿真分析. 本文所提方法预测了真实流场空间中静态强磁场对飞行器中北斗天线辐射性能的影响. 仿真结果表明, 施加静态强磁场能够对电子浓度起到“吹散”作用, 从而提升等离子鞘套中北斗天线的辐射性能, 为减弱等离子鞘套对临近空间高超声速飞行器中北斗天线辐射性能的影响提供理论指导.To enhance the radiation performance of the Beidou antenna in the near-space hypersonic vehicle, the static strong magnetic field is used to weaken the electron density in plasma surrounding the antenna. In order to demonstrate the effect of this program, a time-domain multi-physical method is proposed. In the proposed method, what is first analyzed is the reduction of electron concentration in plasma sheath by static strong magnetic field with the spectral element time domain (SETD) method, which has spectral accuracy. Then, the electron density after mitigation is extracted to replace the original electron concentration around the antenna. Hence, the distribution of the manipulated plasma sheath can be obtained. Finally, the radiation characteristics of BeiDou antenna installed in the vehicle are analyzed by the conformal finite difference time domain (CFDTD) method. The simulation results exhibit radiation patterns under different conditions. With the plasma sheath, the radiated electromagnetic waves are greatly attenuated, which will significantly affect the transmission of communication signals. Importantly, the radiation patterns are effectively improved with the external static magnetic field, confirming that it provides an effective tool to mitigate the influence of plasma sheath on the radiation performance of antenna in hypersonic vehicle.
-
Keywords:
- plasma sheath /
- static magnetic field /
- transient multi-physical simulation /
- electromagnetic radiation
[1] Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879
[2] Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588Google Scholar
[3] Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056Google Scholar
[4] 杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201Google Scholar
Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201Google Scholar
[5] 王仁寿 1995 遥测遥控 5 10
Wang R S 1995 J. Telemetry, Tracking Command 5 10
[6] 王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6Google Scholar
Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6Google Scholar
[7] 张凤友 1986 宇航材料工艺 5 47
Zhang F Y 1986 Aerosp. Mater. Technol. 5 47
[8] 陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar
[9] Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109Google Scholar
[10] Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524Google Scholar
[11] Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706Google Scholar
[12] Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar
[13] Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580Google Scholar
[14] Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29Google Scholar
[15] 邹秀 2006 55 1907Google Scholar
Zou X 2006 Acta Phys. Sin. 55 1907Google Scholar
[16] Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar
[17] Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111Google Scholar
[18] Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882Google Scholar
[19] 刘东林 2015 博士学位论文 (西安: 西安电子科技大学)
Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)
[20] Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200Google Scholar
[21] Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244Google Scholar
[22] 丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93
Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93
[23] Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894Google Scholar
[24] Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504Google Scholar
[25] Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512Google Scholar
[26] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页
Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)
[27] Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798Google Scholar
[28] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar
[29] Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430Google Scholar
[30] 张兵, 韩景龙 2011 航空学报 32 400
Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400
[31] Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8
-
-
[1] Rybak J P, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. 7 879
[2] Bai B, Li X P, Xu J, Liu Y M 2015 IEEE Trans. Plasma Sci. 43 2588Google Scholar
[3] Xu J, Bai B, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wirel. Propag. Lett. 16 1056Google Scholar
[4] 杨敏, 李小平, 刘彦明, 石磊, 谢楷 2014 63 085201Google Scholar
Yang M, Li X P, Liu Y M, Shi L, Xie K 2014 Acta Phys. Sin. 63 085201Google Scholar
[5] 王仁寿 1995 遥测遥控 5 10
Wang R S 1995 J. Telemetry, Tracking Command 5 10
[6] 王家胜, 杨显强, 经姚翔, 游晟 2014 航天器工程 23 6Google Scholar
Wang J S, Yang X Q, Jing Y X, You S 2014 Spacecr. Eng. 23 6Google Scholar
[7] 张凤友 1986 宇航材料工艺 5 47
Zhang F Y 1986 Aerosp. Mater. Technol. 5 47
[8] 陈伟, 郭立新, 李江挺, 淡荔 2017 66 084102Google Scholar
Chen W, Guo L X, Li J T, Dan L 2017 Acta Phys. Sin. 66 084102Google Scholar
[9] Chen K, Xu D G, Li J N, Zhong K, Yao J Q 2021 Results Phys. 24 104109Google Scholar
[10] Podolsky V, Semnani A, Macheret S O, 2020 IEEE Trans. Plasma Sci. 48 3524Google Scholar
[11] Liu J F, Ma H Y, Jiao Z H, Bai G H, Xi X 2020 IEEE Trans. Plasma Sci. 48 2706Google Scholar
[12] Lemmer K M, Gallimore A D, Smith T B, Davis C N, Peterson P 2009 J. Spacecr. Rockets 46 1100Google Scholar
[13] Sun Y F, Dang F C, Yuan C W, He J T, Zhang Q, Zhao X H 2020 IEEE Trans. Antennas Propag. 68 7580Google Scholar
[14] Kim M, Boyd I D 2010 J. Spacecr. Rockets 47 29Google Scholar
[15] 邹秀 2006 55 1907Google Scholar
Zou X 2006 Acta Phys. Sin. 55 1907Google Scholar
[16] Cao Y, Fatemi V, Fang S A, Watanabe K J, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar
[17] Qian C, Ding D Z, Fan Z H, Chen R S 2015 Phys. Plasmas 22 032111Google Scholar
[18] Yan S, Greenwood A D, Jin J M 2018 IEEE Trans. Antennas Propag. 66 1882Google Scholar
[19] 刘东林 2015 博士学位论文 (西安: 西安电子科技大学)
Liu D L 2015 Ph. D. Dissertation (Xi’an: Xidian Univeristy) (in Chinese)
[20] Liu Q H, Cheng C, Massoud H Z 2004 IEEE T COMPUT AID D 23 1200Google Scholar
[21] Bao H G, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 2244Google Scholar
[22] 丁大志, 成爱强, 王林, 张天成, 陈如山 2020 电波科学学报“计算电磁学”专刊邀稿 35 93
Ding D Z, Cheng A Q, Wang L, Zhang T C, Chen R S 2020 Chin. J. Radio Sci. 35 93
[23] Wang L, Ding D Z, Chen R S, Cui W Z, Wang R 2020 IEEE Trans. Antennas Propag. 68 4894Google Scholar
[24] Zhang T C, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 083504Google Scholar
[25] Wang L, Bao H G, Ding D Z, Chen R S 2021 Phys. Plasmas 28 093512Google Scholar
[26] 葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第二版) (西安: 西电电子科技大学出版社) 第14页
Gei D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (Vol. 2) (Xi’an: Xidian University Press) p14 (in Chinese)
[27] Sarkar D, Srivastava K V 2018 IEEE Trans. Antennas Propag. 66 3798Google Scholar
[28] Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar
[29] Cox S M, Matthews P C 2002 J. Comput. Phys. 176 430Google Scholar
[30] 张兵, 韩景龙 2011 航空学报 32 400
Zhang B, Han J L 2011 Acta Aeronaut. et Astronaut. Sin. 32 400
[31] Wu S Q, Liu S B, Guo Z 2010 2010 International Conference on Microwave and Millimeter Wave Technology Chengdu, China, May 8–11, 2020 p8
计量
- 文章访问数: 4008
- PDF下载量: 71
- 被引次数: 0