搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降温工艺对宝石级金刚石单晶品质的影响

肖宏宇 秦玉琨 刘利娜 鲍志刚 唐春娟 孙瑞瑞 张永胜 李尚升 贾晓鹏

引用本文:
Citation:

降温工艺对宝石级金刚石单晶品质的影响

肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏

Effects of cooling process on qualities of Gem-diamond single crystals

Xiao Hong-Yu, Qin Yu-Kun, Liu Li-Na, Bao Zhi-Gang, Tang Chun-Juan, Sun Rui-Rui, Zhang Yong-Sheng, Li Shang-Sheng, Jia Xiao-Peng
PDF
导出引用
  • 在国产六面顶压机上,采用温度梯度法,在5.6 GPa,1200–1400 ℃的高压高温条件下,裂晶问题频繁出现的合成周期内,围绕裂晶现象开展了Ib型宝石级金刚石单晶的生长研究,系统考察了降温工艺对宝石级金刚石单晶品质的影响.针对宝石级金刚石单晶常见的裂纹缺陷,借助于扫描电子显微镜,分别对优质金刚石单晶和存在裂纹金刚石单晶的表面形貌进行了表征;利用微区傅里叶转换红外光谱测试手段,对上述两类晶体的N杂质含量分别进行了测试,依据测试结果,对裂晶出现的原因进行了分析;分别采用传统断电降温和缓慢降温工艺,考察了晶体生长结束后的降温工艺对宝石级金刚石单晶品质的影响.结果表明,缓慢降温工艺在很大程度上可以有效抑制裂晶问题出现.另外,从宝石级金刚石单晶品质和单晶受到的外应力两个方面着手,分别对裂晶出现的机理和采用缓慢降温工艺有效解决裂晶问题的机理进行了讨论.
    In the paper, under 5.6 GPa and 1200-1400℃, the type Ib diamond single crystals on defect-free[111] -oriented seed crystals are synthesized in a cubic anvil under high pressure and high temperature when the crack problem of diamond single crystal appears frequently. Highpurity Fe-Ni-Co solvents are chosen as the catalysts. Highpurity graphite powder (99.99%, purity) is selected as a carbon source. The effects of cooling process on the qualities of Gem-diamond single crystals are studied carefully. First, in order to study the common crack defects of diamond single crystals, using scanning electron microscope (SEM), the surface morphologies of high quality diamond single crystals and crack crystals are obtained respectively. Our SEM test results show that the surfaces of the crack crystals and the high quality crystals are all very smooth. Therefore, the crack crystal problem is not directly caused by the unordered accumulation of carbon. Second, the concentrations of nitrogen in the high quality diamonds and crack crystals are measured by Fourier transform infrared. In our studies, the nitrogen content of the diamond single crystal with crack is similar to the nitrogen content of high quality single crystal, so the appearance of crystal crack is not caused by high impurity content. According to the test results and the regularity of the occurrence of crack crystals, the reasons for the occurrence of crack crystals are analyzed seriously. When the weather conditions such as seasonal change, wind, rain or snowfall are not very stable, the probability of crack crystal problem to appear will increase greatly. In our opinion, the decrease of diamond crystal quality caused by the fluctuation of external growth conditions is the internal cause of crack crystal problem appearing. After growing diamond crystals, choosing the traditional power failure mode and slowing cooling process respectively, the effect of cooling process on the quality of diamond single crystal is investigated. In the season of the crack problem occurring frequently, choosing power failure cooling process, cracks appear in both diamond crystals with 1.3 mm or 6.0 mm in diameter. With the slow cooling process, the synthetic diamond crystals with 1.2 mm or 5.8 mm in diameter are all high-quality single crystals with no cracks inside. The research results show that the slow cooling process can effectively restrain the occurrence of crack crystal problems. In addition, the mechanism problems of crack crystals and the mechanisms of the effects of slow cooling process on diamond crystal qualities are discussed in detail. We believe that the slow cooling process is effective in solving the crack crystal problem, which is mainly attributed to the following two aspects:on the one hand, the slow cooling makes the internal stress of diamond single crystal growing effectively released, which improves the compressive strength of the crystal and the crystal quality as well; on the other hand, the slow cooling makes the solidification process of the catalyst melt slowly, which provides enough time for the crystal to balance the external stress of the catalyst and the equipment, so that the crystals, which are not affected by the unbalanced external stress, are not cracked.
      通信作者: 秦玉琨, qinyukun2046@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61007023)、河南省科技攻关计划(批准号:162102210275)、河南省教育厅项目(批准号:16A140044,16A140012)、河南省高等学校骨干教师资助计划(批准号:2015GGJS-112)和河南省高等学校重点科研项目(批准号:17A430004,18A430017)资助的课题.
      Corresponding author: Qin Yu-Kun, qinyukun2046@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61007023), the Key Science and Technology Program of Henan Province, China (Grant No. 162102210275), the Education Department of Henan Province, China (Grant Nos. 16A140044, 16A140012), the Young Core Instructor and Domestic Visitor Foundation from Henan Province Higher Education Institutions of China (Grant No. 2015GGJS-112), and the Natural Science Foundation of Henan Higher Education Institutions of China (Grant Nos. 17A430004, 18A430017).
    [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defect. Solid 156 163

    [7]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [8]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705 (in Chinese) [肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705]

    [11]

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101 (in Chinese) [任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101]

    [12]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 66 038103]

    [13]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [14]

    Sumiya H, Toda N, Satoh S 1997 Diam. Relat. Mater. 6 1841

    [15]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40

    [16]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diam. Relat. Mater. 35 19

    [17]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104

    [18]

    Sun S S, Liu M N, Cui W, Jia X P, Ma H A, Yang L Y 2016 Int. J. Refract. Met. Hard Mater. 61 79

    [19]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 54 309

    [20]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Comm. 17 7323

    [21]

    Sumiya H, Harano K, Tamasaku K 2015 Diam. Relat. Mater. 58 221

    [22]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101 (in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 61 248101]

  • [1]

    Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1955 Nature 176 51

    [2]

    Bovenkerk H P, Bundy F P, Hall H T, Strong H M, Wentorf Jr R H 1959 Nature 184 1094

    [3]

    Strong H M 1963 J. Phys. Chem. 39 2057

    [4]

    Traore A, Muret P, Fiori A, Eon D, Gheeraert E, Pernot J 2014 Appl. Phys. Lett. 104 052105

    [5]

    Sumiya H, Toda N, Satoh S 2002 J. Cryst. Growth 237-239 1281

    [6]

    Kanda H 2001 Radiat. Eff. Defect. Solid 156 163

    [7]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [8]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [9]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [10]

    Xiao H Y, Qin Y K, Sui Y M, Liang Z Z, Liu L N, Zhang Y S 2016 Acta Phys. Sin. 65 070705 (in Chinese) [肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜 2016 65 070705]

    [11]

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta Phys. Sin. 66 208101 (in Chinese) [任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 66 208101]

    [12]

    Liu Y J, He D W, Wang P, Tang M J, Xu C, Wang W D, Liu J, Liu G D, Kou Z L 2017 Acta Phys. Sin. 66 038103 (in Chinese) [刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自立 2017 66 038103]

    [13]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Rev. Sci. Instrum. 73 18

    [14]

    Sumiya H, Toda N, Satoh S 1997 Diam. Relat. Mater. 6 1841

    [15]

    Palyanov Y N, Borzdov Y M, Kupriyanov I N, Bataleva Y V, Khohkhryakov A F 2015 Diam. Relat. Mater. 58 40

    [16]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diam. Relat. Mater. 35 19

    [17]

    Zhang H, Li S S, Su T C, Hu M H, Li G H, Man H A, Jia X P 2016 Chin. Phys. B 25 118104

    [18]

    Sun S S, Liu M N, Cui W, Jia X P, Ma H A, Yang L Y 2016 Int. J. Refract. Met. Hard Mater. 61 79

    [19]

    Yan B M, Jia X P, Fang C, Chen N, Li Y D, Sun S S, Ma H A 2015 Int. J. Refract. Met. Hard Mater. 54 309

    [20]

    Palyanov Y N, Kupriyanov I N, Borzdova Y M, Bataleva Y V 2015 Cryst. Eng. Comm. 17 7323

    [21]

    Sumiya H, Harano K, Tamasaku K 2015 Diam. Relat. Mater. 58 221

    [22]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101 (in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 61 248101]

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响.  , 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [3] 江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证.  , 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展.  , 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [7] 秦玉琨, 肖宏宇, 刘利娜, 孙瑞瑞, 胡秋波, 鲍志刚, 张永胜, 李尚升, 贾晓鹏. 籽晶尺寸对宝石级金刚石单晶生长的影响.  , 2019, 68(2): 020701. doi: 10.7498/aps.68.20181855
    [8] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长.  , 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [9] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性.  , 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [10] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [11] 肖宏宇, 秦玉琨, 隋永明, 梁中翥, 刘利娜, 张永胜. 合成腔体尺寸对Ib型六面体金刚石单晶生长的影响.  , 2016, 65(7): 070705. doi: 10.7498/aps.65.070705
    [12] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定.  , 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [13] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征.  , 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [14] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响.  , 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [15] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [16] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [17] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征.  , 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备.  , 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [19] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征.  , 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  5796
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-28
  • 修回日期:  2018-04-18
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map