-
长期监测大气中CO2及其稳定同位素不仅可以获得CO2源和汇信息,还可以确定不同排放源对大气中CO2的贡献.傅里叶变换红外光谱技术是目前大气中痕量气体柱浓度高精度遥测的一种重要方法.本研究基于地基高分辨率傅里叶变换红外光谱仪采集的近红外太阳吸收光谱反演出大气中CO2的稳定同位素13CO2和12CO2.在选择的13CO2的三个光谱窗口和12CO2的两个光谱窗口光谱拟合残差都很小,光谱拟合质量高.实验观测期间CO2同位素13CO2和12CO2的反演误差平均值分别为(1.180.27)%和(0.890.25)%;利用Allan方差计算出观测系统的碳同位素比值13C的测量精度为0.041.获得了2015年9月18日至2016年9月24日一年内大气中碳同位素比值13C的长时间序列.结果表明,在整个测量期间13C在-7.58-11.66范围内变化,平均值为(-9.50.57);13C有着明显的季节变化,冬季最小,夏季最大.分析了取暖导致的化石燃料燃烧排放增多是冬季大气中CO2重同位素13CO2贫化的原因.观测结果显示了高分辨率傅里叶变换红外光谱仪具有准确和高精度观测大气中CO2的稳定同位素和同位素比值13C的能力.
-
关键词:
- 傅里叶变换红外光谱技术 /
- 二氧化碳 /
- 稳定同位素比值 /
- 柱浓度
Long-term measurement of CO2 and its stable isotopes not only obtain the CO2 sources and sink information, but also determine the contributions of different emission sources to atmospheric CO2.Fourier transform infrared spectroscopy (FTIR) is an important technique which can provide highly precise remote sensing of column abundances of atmospheric trace gases.In the study,the stable isotopes of atmospheric CO2,13CO2 and 12CO2,are retrieved from the near-infrared solar absorption spectra collected by a ground-based high-resolution Fourier transform spectrometer. Three spectral windows of 13CO2 and two spectral windows of 12CO2 are chosen to retrieve the two species.The root mean square spectral fitting residuals are about 1.2%,2.3% and 1.2% for the three spectral windows of 13CO2,and about 0.64% and 0.60% for the two spectral windows of 12CO2,respectively.The small spectral fitting residuals indicate the high-quality spectral fitting.The mean retrieval errors are (1.180.27)% and (0.890.25)% for 13CO2 and 12CO2 during the experiment,respectively.The measurement precision of carbon isotopic ratio 13C for the observation system is estimated to be about 0.041 based on the Allan variance method,comparable to the precision of in situ FTIR measurement.Moreover,long time series of atmospheric 13C in one year from September 18,2015 to September 24,2016 is obtained.The results show that atmospheric 13C varies from -7.58 to -11.66,and the mean value is about (-9.50.57) over the duration of the experiment.Also,time series of carbon isotopic signature 13C has an obvious seasonal trend,with a minimum of (-9.350.47) in winter and a maximum of (-8.730.39) in summer. The further analysis suggests that the increase of emission from the fossil fuel burning due to heating may explain the depletion of heavy isotope 13CO2 in winter.Additionally,it is revealed that the variation range of atmospheric 13C observed in Hefei area is consistent with the reported values in Nanjing area based on in situ measurement,while 13C values in summer and winter are higher than the corresponding values detected in Beijing area as indicated in recent publications,which may result from the fact that the CO2 emissions from the fossil fuel combustion in Beijing are more than those in Hefei.The experimental results demonstrate the ability of the ground-based high-resolution FTIR to detect the stable isotopes of atmospheric CO2,13CO2 and 12CO2,and carbon isotopic ratio 13C with a high precision and accuracy.-
Keywords:
- Fourier transform infrared spectroscopy /
- stable isotopic ratio /
- carbon dioxide /
- column abundance
[1] Intergovernmental Panel on Climate Change (IPCC) 2014 Climate Change 2014: the Physical Science Basis (Geneva: IPCC Secretariat) p2
[2] Gorka M, Lewicka S D 2013 Appl. Geochem. 35 7
[3] Wada R, Pearce J K, Nakayama T, Matsumi Y, Hiyama T, Inoue G, Shibata T 2011 Atmos. Environ. 45 1168
[4] Pataki D E, Bowling D R, Ehleringer J R 2003 J. Geophys. Res. Atoms. 08 1
[5] Takahashi H A, Konohira E, Hiyama T, Minami M, Nakamura T, Yoshida N 2002 Tellus B 54 97
[6] Xu J, Lee X, Xiao W, Cao C, Liu S, Wen X, Xu J, Zhang Z, Zhao J 2016 Atmos. Chem. Phys. 16 3385
[7] Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501
[8] Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]
[9] Sturm P, Leuenberger M, Valentino F L, Lehmann B, Ihly B 2006 Atmos. Chem. Phys. 6 1991
[10] Liu W, Wei N N, Wang G H, Yao J, Zeng Y S, Fan X B, Geng Y H, Li Y (in Chinese) [刘卫, 卫楠楠, 王广华, 姚剑, 曾友石, 范雪波, 耿彦红, 李燕 2012 环境科学 33 1041]
[11] Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659
[12] Chen J M, Mo G, Deng F Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52
[13] Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52
[14] Deutscher N M, Sherlock V, Mikaloff F S E, Griffith D W T, Notholt J, Macatangay R, Connor B J, Robinson J, Shiona H, Velazco V A, Wang Y, Wennberg P O, Wunch D 2014 Atmos. Chem. Phys. 14 9883
[15] Rokotyan N V, Zakharov V I, Gribanov K G, Schneider M, Bron F M, Jouzel J, Imasu R, Werner M, Butzin M, Petri C, Warneke T, Notholt J 2014 Atmos. Meas. Tech. 7 2567
[16] Boesch H, Deutscher N M, Warneke T, Byckling K, Cogan A J, Griffith D W T, Notholt J, Parker R J, Wang Z 2013 Atmos. Meas. Tech. 6 599
[17] Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B 2011 Philosoph. Trans. Royal Soc. London A: Math. Phys. Engineer. Sci. 369 2087
[18] Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Heymann J, Rozanov A, Schneising O, Suto H, Toon G C, Warneke T 2012 J. Quantit. Spectrosc. Radiat. Trans. 113 2009
[19] Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D W T, Notholt J, Warneke T Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581
[20] Wunch D, Toon G C, Sherlock V, Deutscher N M, Liu X, Feist D G, Wennberg P O 2015 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
[21] Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581
[22] Hase1 F, Drouin B J, Roehl C M, Toon G C, Wennberg P O, Wunch D, Blumenstock T, Desmet F, Feist D G, Heikkinen P, de Mazire M, Rettinger M, Robinson J, Schneider M, Sherlock V, Sussmann R, T Y, Warneke T, Weinzier C 2013 Atmos. Meas. Tech. 6 3527
[23] Hase F 2012 Atmos. Meas. Tech. 5 603
[24] Washenfelder R A, Toon G C, Blavier J F, Yang Z, Allen N T, Wennberg P O, Vay S A, Matross D M, Daube B C Werle P, Mcke R, Slemr F Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481
[25] Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131
[26] Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481
[27] Buschmann M, Deutscher N M, Sherlock V, Palm M, Warneke T, Notholt J 2016 Atmos. Meas. Tech. 9 577
[28] Cambaliza M O L 2010 Ph. D. Dissertation (Pullman: Washington State University)
[29] Pang J, Wen X, Sun X 2016 Sci. Total Environ. 539 322
-
[1] Intergovernmental Panel on Climate Change (IPCC) 2014 Climate Change 2014: the Physical Science Basis (Geneva: IPCC Secretariat) p2
[2] Gorka M, Lewicka S D 2013 Appl. Geochem. 35 7
[3] Wada R, Pearce J K, Nakayama T, Matsumi Y, Hiyama T, Inoue G, Shibata T 2011 Atmos. Environ. 45 1168
[4] Pataki D E, Bowling D R, Ehleringer J R 2003 J. Geophys. Res. Atoms. 08 1
[5] Takahashi H A, Konohira E, Hiyama T, Minami M, Nakamura T, Yoshida N 2002 Tellus B 54 97
[6] Xu J, Lee X, Xiao W, Cao C, Liu S, Wen X, Xu J, Zhang Z, Zhao J 2016 Atmos. Chem. Phys. 16 3385
[7] Werner R A, Brand W A 2001 Rapid Commun. Mass Spectrom. 15 501
[8] Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]
[9] Sturm P, Leuenberger M, Valentino F L, Lehmann B, Ihly B 2006 Atmos. Chem. Phys. 6 1991
[10] Liu W, Wei N N, Wang G H, Yao J, Zeng Y S, Fan X B, Geng Y H, Li Y (in Chinese) [刘卫, 卫楠楠, 王广华, 姚剑, 曾友石, 范雪波, 耿彦红, 李燕 2012 环境科学 33 1041]
[11] Sturm P, Tuzson B, Henne S, Emmenegger L 2013 Atmos. Meas. Tech. 6 1659
[12] Chen J M, Mo G, Deng F Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52
[13] Moore J, Jacobson A D 2015 Elem. Sci. Anth. 3 52
[14] Deutscher N M, Sherlock V, Mikaloff F S E, Griffith D W T, Notholt J, Macatangay R, Connor B J, Robinson J, Shiona H, Velazco V A, Wang Y, Wennberg P O, Wunch D 2014 Atmos. Chem. Phys. 14 9883
[15] Rokotyan N V, Zakharov V I, Gribanov K G, Schneider M, Bron F M, Jouzel J, Imasu R, Werner M, Butzin M, Petri C, Warneke T, Notholt J 2014 Atmos. Meas. Tech. 7 2567
[16] Boesch H, Deutscher N M, Warneke T, Byckling K, Cogan A J, Griffith D W T, Notholt J, Parker R J, Wang Z 2013 Atmos. Meas. Tech. 6 599
[17] Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B 2011 Philosoph. Trans. Royal Soc. London A: Math. Phys. Engineer. Sci. 369 2087
[18] Reuter M, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Heymann J, Rozanov A, Schneising O, Suto H, Toon G C, Warneke T 2012 J. Quantit. Spectrosc. Radiat. Trans. 113 2009
[19] Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D W T, Notholt J, Warneke T Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581
[20] Wunch D, Toon G C, Sherlock V, Deutscher N M, Liu X, Feist D G, Wennberg P O 2015 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
[21] Keppel-Aleks G, Wennberg P O, Schneider T 2011 Atmos. Chem. Phys. 11 3581
[22] Hase1 F, Drouin B J, Roehl C M, Toon G C, Wennberg P O, Wunch D, Blumenstock T, Desmet F, Feist D G, Heikkinen P, de Mazire M, Rettinger M, Robinson J, Schneider M, Sherlock V, Sussmann R, T Y, Warneke T, Weinzier C 2013 Atmos. Meas. Tech. 6 3527
[23] Hase F 2012 Atmos. Meas. Tech. 5 603
[24] Washenfelder R A, Toon G C, Blavier J F, Yang Z, Allen N T, Wennberg P O, Vay S A, Matross D M, Daube B C Werle P, Mcke R, Slemr F Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481
[25] Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131
[26] Griffith D W T, Deutscher N M, Caldow C, Kettlewell G, Riggenbach M, Hammer S 2012 Atmos. Meas. Tech. 5 2481
[27] Buschmann M, Deutscher N M, Sherlock V, Palm M, Warneke T, Notholt J 2016 Atmos. Meas. Tech. 9 577
[28] Cambaliza M O L 2010 Ph. D. Dissertation (Pullman: Washington State University)
[29] Pang J, Wen X, Sun X 2016 Sci. Total Environ. 539 322
计量
- 文章访问数: 7094
- PDF下载量: 275
- 被引次数: 0