-
采用固相法制备锂离子电池用固体电解质磷酸钛锂铝Li1.3Al0.3Ti1.7(PO4)3(LATP),研究了不同烧结温度以及助熔剂对LATP固体电解质离子电导率的影响.采用X射线衍射、能谱分析、扫描电镜和交流阻抗等方法,研究样品的结构特征、元素含量、形貌特征以及离子导电性能.结果表明,在900℃烧结可以获得结构致密、离子电导率较高的纯相LATP陶瓷固体电解质.与添加助熔剂LiBO2的样品进行对比实验发现,采用B2O3代替LiBO2作为助熔剂也可以提高烧结样品的离子电导率,并且电解质的离子电导率随助熔剂添加量的增大,先增大后减小,其中添加质量百分比为2%的B2O3的样品具有最高的室温离子电导率,为1.6110-3 S/cm.
-
关键词:
- 固体电解质 /
- Li1.3Al0.3Ti1.7(PO4)3 /
- 助熔剂 /
- 固相烧结法
Using solid electrolyte instead of liquid electrolyte is regarded as an important measure to solve the safety problems of lithium ion batteries, and has attracted wide attention of researchers. Among many solid electrolytes, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is considered to be one of the most commercially available solid electrolytes for its high ionic conductivity. However, as a replacement substitute of for liquid electrolyte, the LATP solid electrolyte has an ionic transport property of LATP solid electrolyte that still needs to be improved. In this paper, LATP solid electrolyte used for lithium ion batteries is successfully prepared by solid reaction process, and the influences of different sintering temperatures and addition of flux B2O3 and or LiBO2 on the ionic conductivity of LATP solid electrolyte are discussed. The structures, element content, morphologies, and ionic conductivities of the sintered samples are investigated at room temperature by X-ray diffraction, energy dispersive spectrometer, electrochemical impedance spectrum and scanning electron microscopy. It is found that pure phase LATP ceramic solid electrolyte can be obtained at the sintering temperatures between 800 and 1000℃. And the ionic conductivities of the samples first increase first and then decrease with the increasing sintering temperatures increasing. The sample with a highest ionic conductivity of 4.1610-4 S/cm can be obtained at the a sintering temperature of 900℃. Further research shows that the ionic conductivities of the sintered samples can also be effectively improved by using B2O3 instead of LiBO2 as flux. Moreover, the ionic conductivities of the samples first increase first and then decrease with the increasing amount of the flux increasing. And the highest ionic conductivity of 1.6110-3 S/cm is obtained with the sampleby adding B2O3 with a mass fraction of 2% into the sample. The results indicate that the elevating of sintering temperature and the adding of flux B2O3 and or LiBO2 can both decreasing reducing the grain boundary impedances of the LATP samples, so as to thereby improve improving their ionic conductivities. However, when the sintering temperature is higher than 900℃ or the amount of flux B2O3 and or LiBO2 exceeds the mass percentage of 2%, the ionic conductivities of the LATP samples will drop. In addition, the ionic conductivities of the samples used using B2O3 as flux are higher than that those of the samples used LiBO2 as flux. These results also indicate that the increases of ionic conductivities of LATP samples with flux is are closely related to their densities density and compactness, and is irrespective of no matter whether or not the flux contains lithium ion.-
Keywords:
- solid electrolyte /
- Li1.3Al0.3Ti1.7(PO4)3 /
- flux /
- solid state sintered technology
[1] Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473
[2] Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410
[3] Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6
[4] Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]
[5] Fu J 1997 Solid State Ionics 96 195
[6] Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759
[7] Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015 64 077302]
[8] Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128
[9] Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77
[10] Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945
[11] Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49
[12] Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]
[13] Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]
[14] Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410
[15] Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653
[16] Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847
[17] Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801
[18] Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90
[19] Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]
[20] Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755
[21] Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]
[22] Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339
[23] Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149
[24] Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216
[25] Thevenin J 1985 J. Power Sources 14 45
[26] Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477
[27] Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870
[28] He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]
[29] Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]
[30] Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]
[31] Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014 63 168201]
[32] Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]
[33] Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015 64 248201]
[34] Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97
[35] Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646
[36] Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334
[37] Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611
[38] Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]
-
[1] Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473
[2] Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410
[3] Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6
[4] Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]
[5] Fu J 1997 Solid State Ionics 96 195
[6] Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759
[7] Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015 64 077302]
[8] Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128
[9] Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77
[10] Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945
[11] Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49
[12] Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]
[13] Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]
[14] Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410
[15] Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653
[16] Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847
[17] Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801
[18] Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90
[19] Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]
[20] Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755
[21] Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]
[22] Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339
[23] Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149
[24] Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216
[25] Thevenin J 1985 J. Power Sources 14 45
[26] Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477
[27] Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870
[28] He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]
[29] Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]
[30] Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]
[31] Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014 63 168201]
[32] Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]
[33] Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015 64 248201]
[34] Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97
[35] Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646
[36] Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334
[37] Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611
[38] Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]
计量
- 文章访问数: 7354
- PDF下载量: 320
- 被引次数: 0