搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型石墨烯及其衍生物的结构与电子特性

刘慧英 张秀钦 方艺梅 朱梓忠

引用本文:
Citation:

T型石墨烯及其衍生物的结构与电子特性

刘慧英, 张秀钦, 方艺梅, 朱梓忠

Structural and electronic properties of T-graphene and its derivatives

Liu Hui-Ying, Zhang Xiu-Qin, Fang Yi-Mei, Zhu Zi-Zhong
PDF
导出引用
  • 采用基于密度泛函理论的第一原理方法研究了T型石墨烯及其衍生物-n(n=1–5)的结构稳定性和电子结构性质.T型石墨烯是一种拥有四角形环的二维碳材料同素异构体,通过改变连接四角形环的碳链上的碳原子个数n,可以得到一系列的sp-sp2杂化结构,称其为T型石墨烯衍生物-n.计算结果表明:这些材料的结构稳定性、化学键类型和电子结构性质都依存于n的奇偶性.其中T型石墨烯(n=0)的结构最稳定,并形成一个由8个碳原子构成的大环.声子谱计算的结果表明,n为偶数时的体系具有动力学稳定性,而n为奇数时的体系则是不稳定的.n为偶数时体系四角形环之间的碳链上的化学键呈单、三键交叉排列,体系显示为金属性特征,且随着n的增大,体系的金属性加强.n为奇数时体系四角形环之间的碳链上的化学键则为双键连续排列,体系呈金属性且具有磁性(n=1除外).研究表明该系列材料作为一种新的二维碳材料同素异构体,具有独特的结构和丰富的电子结构特性,很可能在纳米器件中得到广泛应用.
    Recent years there has been aroused a growing interest in designing two-dimensional (2D) structures of carbon allotropes, owing to the great success in graphene. The T-graphene is a newly proposed 2D carbon allotrope possessing tetragonal symmetry other than hexagonal symmetry of graphene. Also, the energetic and dynamical stabilities of T-graphene have been revealed. So motivated, we investigate the structural stabilities and electronic properties of T-graphene and especially its derivatives-n(n=1-5) by using the first-principle calculation based on the density function theory. By changing the atomic number (n) of the linear carbon chains connecting the two tetragon rings of T-graphene, a series of sp-sp2 hybrid structures can be formed, which is named T-graphene derivatives-n. The calculation results show that the structural stabilities, chemical bond types and electronic structures of these materials depend greatly on the parity of n. Owing to a strong π-bond formed by eight carbon atoms in T-graphene, it becomes the one with the lowest energy in all these materials studied in this work. An interesting phenomenon is found that the T-graphene derivatives-n with even n are dynamically stable as witnessed by the calculated phonon spectra without imaginary modes, while those with odd n are dynamically unstable. The metallic behaviors are present in the T-graphene derivatives-n with even carbon atoms in the linear carbon chains, showing an alternating single and triple C–C bonds. Besides, we observe that the metallicity of the T-graphene derivatives-n with even n becomes stronger as n increases. On the other hand, the linear carbon chains with odd carbon atoms are comprised of continuous C=C double bonds. These T-graphene derivatives-n with odd n also show metallic behaviors, but turn into magnetic materials (except for n=1), the magnetic moments are about 0.961μB (n=3) and 0.863μB (n=5) respectively, and ferromagnetic ordering is the only possibility for the magnetism, which rarely occurs in carbon material. Our first-principle studies indicate that the introducing carbon chains between the tetragonal carbon rings of T-graphene constitute an efficient method to obtain new two-dimensional carbon allotrope. With different numbers (even or odd) of carbon atoms on the chains, the constructed 2D carbon allotropes could show contrasting dynamical and magnetic properties. These findings provide a theoretical basis for designing two-dimensional carbon materials and carbon-based nanoelectronic devices.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202601)、国家自然科学基金青年科学基金(批准号:11605073)和福建省教育厅科技项目(批准号:JAT160690)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National key Research and Development Program, China (Grant No. 2016YFA0202601), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11605073), and the Scientific Research Foundation of the Education Department of Fujian Province, China (Grant No. JAT160690).
    [1]

    Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Pendry J B 2007 Science 315 1226

    [6]

    Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427

    [7]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [8]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436

    [9]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403

    [10]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [11]

    Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289

    [12]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [13]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804

    [14]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [15]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [16]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [17]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [18]

    Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016 13 133101]

    [19]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [20]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [21]

    Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959

    [22]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505

    [23]

    Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304

    [24]

    Majidi R 2015 Physica E 74 371

    [25]

    Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704

    [26]

    Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004

    [27]

    Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

  • [1]

    Kroto H W, Heath J R, O'brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Pendry J B 2007 Science 315 1226

    [6]

    Popinciuc M, Józsa C, Zomer P J, Tombros N, Veligura A, Jonkman H T, van Wees B J 2009 Phys. Rev. B 80 214427

    [7]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [8]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436

    [9]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403

    [10]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [11]

    Kondo M, Nozaki D, Tachibana M, Yumura T, Yoshizawa K 2005 Chem. Phys. 312 289

    [12]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [13]

    Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804

    [14]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [15]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [16]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [17]

    Haley M M 2008 Pure Appl. Chem. 80 519

    [18]

    Chi B Q, Liu Y, Xu J C, Qin X M, Sun C, Bai C H, Liu Y F, Zhao X L, Li X W 2016 Acta Phys. Sin. 13 133101 (in Chinese)[迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武2016 13 133101]

    [19]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [20]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [21]

    Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J, Liu F 2015 J. Phys. Chem. Lett. 6 2959

    [22]

    Liu Y, Wang G, Huang Q S, Guo L W, Chen X L 2012 Phys. Rev. Lett. 108 225505

    [23]

    Ye X J, Liu C S, Zhong W, Zeng Z, Du Y W 2014 J. Appl. Phys. 116 114304

    [24]

    Majidi R 2015 Physica E 74 371

    [25]

    Liu C S, Jia R, Ye X J, Zeng Z 2013 J. Chem. Phys. 139 034704

    [26]

    Dai C J, Yan X H, Xiao Y, Guo Y D 2014 Europhys. Lett. 107 37004

    [27]

    Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R, Su G 2012 J. Appl. Phys. 112 074315

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [33]

    Feynman R P 1939 Phys. Rev. 56 340

    [34]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究.  , 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [6] 徐贤达, 赵磊, 孙伟峰. 石墨烯纳米网电导特性的能带机理:第一原理计算.  , 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [7] 李琳, 孙宇璇, 孙伟峰. 层状氧化钼的电子结构、磁和光学性质第一原理研究.  , 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [8] 池明赫, 赵磊. 石墨烯纳米片磁有序和自旋逻辑器件第一原理研究.  , 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] 高潭华. 表面氢化双层硅烯的结构和电子性质.  , 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [10] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质.  , 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [11] 吴江滨, 张昕, 谭平恒, 冯志红, 李佳. 旋转双层石墨烯的电子结构.  , 2013, 62(15): 157302. doi: 10.7498/aps.62.157302
    [12] 李荣, 罗小玲, 梁国明, 付文升. 稀土元素掺杂对VH2解氢性能的影响.  , 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [13] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质.  , 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [14] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算.  , 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [15] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究.  , 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [16] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构.  , 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究.  , 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 王松有, 段国玉, 邱建红, 贾 瑜, 陈良尧. 闪锌矿结构的PtN:一种不稳定的过渡金属氮化物.  , 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [19] 孟 醒, 徐晓光, 刘 伟, 孙 源, 陈 岗. 钙钛矿型HoNiO3中电荷歧化的第一原理研究.  , 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [20] 刘慧英, 侯柱锋, 朱梓忠, 黄美纯, 杨 勇. InSb的锂嵌入形成能第一原理计算.  , 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
计量
  • 文章访问数:  7945
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-10
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map