搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于上证指数高频数据的中国资本市场微观特性研究

唐振鹏 陈尾虹 冉梦

引用本文:
Citation:

基于上证指数高频数据的中国资本市场微观特性研究

唐振鹏, 陈尾虹, 冉梦

Microscopic characteristics of Chinese capital market based on the high frequency data of Shanghai composite index

Tang Zhen-Peng, Chen Wei-Hong, Ran Meng
PDF
导出引用
  • 以上证指数高频数据为研究对象,基于上涨、平缓和下跌三个市场状态分析我国金融市场的微观特性.通过分析上证指数在不同时间间隔下的概率分布、自相关性和多分形三个特性,发现上证指数对数增量序列存在厚尾、列维非高斯分布特征,且随着时间间隔的增大,收益序列愈收敛于正态分布,其中,下降趋势收敛于正态分布的速度更快,拟合于列维分布的效果更好.最为突出的是,在自相关函数分析中,上证指数的收益率无长期记忆性,而波动率则具有较强的记忆性.同时,波动率的自相关性存在明显的周期性特征,即T=240 min,且在下降趋势时其相关性最高.在以时间增量刻画的多重分形结构中,对于不同的时间序列、时间间隔,由于受投资期限和流动性的影响,三种股市状态的收益率波动存在着短期和长期性的差异.上证指数的总体宏观行为与国际成熟股市较为一致,但在微观特性上仍存在显著差异,其所特有的周期性是投资者的惯性反冲所致,而自相关性函数较之成熟股市衰减较慢,则表明投资者的投资行为更多地受历史信息的影响.
    This paper mainly uncovers the typical microscopic characteristics of Chinese capital market in three different stock price stages of rising, steady and falling based on the high frequency data of Shanghai composite index. Firstly, by analyzing the probability distribution of the Shanghai composite index in different time intervals, we clearly find that the logarithmic change of the index presents an obvious heavy tail feature as well as non-Gaussian Levy distribution, and the return series converges to a normal distribution with the increase of the time interval, which becomes more significant especially in the falling stage of stock prices. Secondly, by calculating the autocorrelation function, we observe that unlike the return rate, the fluctuation ratio of Shanghai composite index demonstrates remarkable long memory volatility with a periodicity of about 240 min, and the autocorrelation curve in falling stage is much higher than in rising and steady stages. Thirdly, in the multi-fractal structure, the volatility of return series has significant short-term and long-term differences among three different stages of rising, steady and falling due to the effects of time limitation and liquidity of investment. Finally, the macroscopic behavior of the Shanghai composite index is relatively consistent with that of the international mature stock market, however, the corresponding microscopic characteristics demonstrate significant differences due to the fact that the Chinese capital market is strongly dependent on the macroeconomic policy, investor sentiment, and liquidity levels. It is quite remarkable that the tail distribution of mature stock market is much fatter than that of Chinese stock market because of the special control and limit mechanism of stock prices in China, which finally causes the considerably lower amplitude of price fluctuation. Moreover, it is also found that the attenuation speed of the autocorrelation function in the Chinese capital market is obviously slower than that in the mature stock market, which suggests that the behaviors of investors in Chinese stock market are more likely to be influenced by the historic exchange information. At the same time, the periodicity of autocorrelation function is actually caused by the inertia recoil of investors, which further verifies the information asymmetry of Chinese stock market. Especially, by changing the starting values of the samples, we find that the periodicity of autocorrelation function still remains the same, which indicates that the periodicity characteristic of stock price is not dominated only by the intraday pattern of trading activity. Therefore, the investors should discover the underlying rules of high-frequency data and extract more useful knowledge in order to guide their investment decisions more effectively.
      通信作者: 陈尾虹, tingling69@163.com
    • 基金项目: 国家自然科学基金(批准号:71573042,71171056)和福建省社科基金青年博士项目(批准号:FJ2016C200)资助的课题.
      Corresponding author: Chen Wei-Hong, tingling69@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71573042, 71171056) and the Society Science Foundation for Young Ph. D. of Fujian Province, China (Grant No. FJ2016C200).
    [1]

    Mantegna R N, Stanley H E 1995 Nature 376 46

    [2]

    Chatfield C 2016 The Analysis of Time Series: An Introduction (Boca Raton: CRC Press) pp92-135

    [3]

    Chakraborti A, Toke I M, Patriarca M, Abergel F 2011 Quant. Financ. 11 991

    [4]

    Huang J P 2013 Economy Physics (Beijing: Higher Education Press) pp1-7 (in Chinese) [黄吉平 2013 经济物理学(北京:高等教育出版社)第1-7页]

    [5]

    Zhou R W, Li J C, Dong Z W, Li Y X, Qian Z W 2017 Acta Phys. Sin. 66 040501 (in Chinese) [周若微, 李江城, 董志伟, 李云仙, 钱振伟 2017 66 040501]

    [6]

    Parisi D R, Sornette D, Helbing D 2013 Phys. Rev. E 87 012804

    [7]

    Wei Y, Wang P 2008 Physica A 387 1585

    [8]

    Wu P Z, Ma H R 2008 J. Shanghai Jiaotong Univ. 42 147 (in Chinese) [吴斌哲, 马红孺 2008 上海交通大学学报 42 147]

    [9]

    Gao Y C, Zeng Y, Cai S M 2015 J. Stats. Mech. 2015 03017

    [10]

    Qiu T, Zheng B, Ren F, Trimper S 2007 Physica A 378 387

    [11]

    Gao Y C, Cai S M, Wang B H 2012 J. Stats. Mech. 2012 12016

    [12]

    Mandelbrot B B 1963 J. Polit. Econ. 71 421

    [13]

    Sornette D, Knopoff L, Kagan Y, Vanneste C 1996 J. Geophys. Res. 101 13883

    [14]

    Zhou W X 2007 Introduction of Econophysics (Shanghai: Shanghai University of Finance and Economics Press) pp17-33 (in Chinese) [周炜星 2007 金融物理学导论 (上海: 上海财经大学出版社) 第17-33页]

    [15]

    Mantegna R N, Stanley H E 1994 Phys. Rev. Lett. 73 2946

    [16]

    Wang B H, Hui P M 2001 Eur. Phys. J. B 20 573

    [17]

    Issler M, Hller J, Imamoğlu A 2016 Phys. Rev. B 93 081414

    [18]

    Ncheuguim E K, Appiah-Kubi S, Ofori-Dankwa J 2014 Res. Meth. Strateg. Manag. 10 215

    [19]

    Liu S D, Fu Z T, Liu S K 2014 Chin. J. Geophys. 57 2751 (in Chinese) [刘式达, 付遵涛, 刘式适 2014 地球 57 2751]

    [20]

    Ma F, Wei Y, Huang D, Chen Y 2014 Physica A 405 171

    [21]

    Mandelbrot B 1974 J. Appl. Probab. 11 437

    [22]

    Zhang T W, Lu W B, Li S 2013 Economist 9 97 (in Chinese) [张腾文, 鲁万波, 李隋 2013 经济学家 9 97]

    [23]

    Wu M C, Huang M C, Yu H C, Chiang T C 2006 Phys. Rev. E 73 019908

    [24]

    Zhou W C, Xu H C, Cai Z Y, Wei J R, Zhu X Y, Wang W, Zhao L, Huang J P 2009 Physica A 388 891

    [25]

    Calvet L E, Fisher A 2008 Multifractal Volatility: Theory, Forecasting, and Pricing (Massachusetts: Acedemic Press) pp23-31

    [26]

    Toth B, Eisler Z, Lillo F, Bouchaud J P, Kockelkoren J, Farmer J D 2012 Quant. Financ. 12 1015

    [27]

    Flimonov V, Sornette D 2012 Phys. Rev. E 85 056108

  • [1]

    Mantegna R N, Stanley H E 1995 Nature 376 46

    [2]

    Chatfield C 2016 The Analysis of Time Series: An Introduction (Boca Raton: CRC Press) pp92-135

    [3]

    Chakraborti A, Toke I M, Patriarca M, Abergel F 2011 Quant. Financ. 11 991

    [4]

    Huang J P 2013 Economy Physics (Beijing: Higher Education Press) pp1-7 (in Chinese) [黄吉平 2013 经济物理学(北京:高等教育出版社)第1-7页]

    [5]

    Zhou R W, Li J C, Dong Z W, Li Y X, Qian Z W 2017 Acta Phys. Sin. 66 040501 (in Chinese) [周若微, 李江城, 董志伟, 李云仙, 钱振伟 2017 66 040501]

    [6]

    Parisi D R, Sornette D, Helbing D 2013 Phys. Rev. E 87 012804

    [7]

    Wei Y, Wang P 2008 Physica A 387 1585

    [8]

    Wu P Z, Ma H R 2008 J. Shanghai Jiaotong Univ. 42 147 (in Chinese) [吴斌哲, 马红孺 2008 上海交通大学学报 42 147]

    [9]

    Gao Y C, Zeng Y, Cai S M 2015 J. Stats. Mech. 2015 03017

    [10]

    Qiu T, Zheng B, Ren F, Trimper S 2007 Physica A 378 387

    [11]

    Gao Y C, Cai S M, Wang B H 2012 J. Stats. Mech. 2012 12016

    [12]

    Mandelbrot B B 1963 J. Polit. Econ. 71 421

    [13]

    Sornette D, Knopoff L, Kagan Y, Vanneste C 1996 J. Geophys. Res. 101 13883

    [14]

    Zhou W X 2007 Introduction of Econophysics (Shanghai: Shanghai University of Finance and Economics Press) pp17-33 (in Chinese) [周炜星 2007 金融物理学导论 (上海: 上海财经大学出版社) 第17-33页]

    [15]

    Mantegna R N, Stanley H E 1994 Phys. Rev. Lett. 73 2946

    [16]

    Wang B H, Hui P M 2001 Eur. Phys. J. B 20 573

    [17]

    Issler M, Hller J, Imamoğlu A 2016 Phys. Rev. B 93 081414

    [18]

    Ncheuguim E K, Appiah-Kubi S, Ofori-Dankwa J 2014 Res. Meth. Strateg. Manag. 10 215

    [19]

    Liu S D, Fu Z T, Liu S K 2014 Chin. J. Geophys. 57 2751 (in Chinese) [刘式达, 付遵涛, 刘式适 2014 地球 57 2751]

    [20]

    Ma F, Wei Y, Huang D, Chen Y 2014 Physica A 405 171

    [21]

    Mandelbrot B 1974 J. Appl. Probab. 11 437

    [22]

    Zhang T W, Lu W B, Li S 2013 Economist 9 97 (in Chinese) [张腾文, 鲁万波, 李隋 2013 经济学家 9 97]

    [23]

    Wu M C, Huang M C, Yu H C, Chiang T C 2006 Phys. Rev. E 73 019908

    [24]

    Zhou W C, Xu H C, Cai Z Y, Wei J R, Zhu X Y, Wang W, Zhao L, Huang J P 2009 Physica A 388 891

    [25]

    Calvet L E, Fisher A 2008 Multifractal Volatility: Theory, Forecasting, and Pricing (Massachusetts: Acedemic Press) pp23-31

    [26]

    Toth B, Eisler Z, Lillo F, Bouchaud J P, Kockelkoren J, Farmer J D 2012 Quant. Financ. 12 1015

    [27]

    Flimonov V, Sornette D 2012 Phys. Rev. E 85 056108

  • [1] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能.  , 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20210635
    [3] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理.  , 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [4] 周双, 冯勇, 吴文渊, 汪维华. 一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法.  , 2016, 65(2): 020502. doi: 10.7498/aps.65.020502
    [5] 张耿鸿, 朱佳, 姜格蕾, 王彪, 郑跃. 压缩应变载荷下氮化镓隧道结微观压电特性及其巨压电电阻效应.  , 2016, 65(10): 107701. doi: 10.7498/aps.65.107701
    [6] 谢文球, 王自成, 罗积润, 刘青伦. 正弦波导高频特性分析.  , 2014, 63(4): 044101. doi: 10.7498/aps.63.044101
    [7] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究.  , 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [8] 徐敏义, 杜诚, 米建春. 圆形射流中心线上小尺度湍流的统计特性及其受高频噪声的影响.  , 2011, 60(3): 034701. doi: 10.7498/aps.60.034701
    [9] 丁勇, 陈仁杰, 郭帅, 刘兴民, 李东, 闫阿儒. 添加Dy元素对钕铁硼速凝片微观组织和磁特性的影响.  , 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [10] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究.  , 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [11] 樊国丽, 江月松, 刘丽, 黎芳. 太赫兹GaAs肖特基混频二极管高频特性分析.  , 2010, 59(8): 5374-5381. doi: 10.7498/aps.59.5374
    [12] 杨雁, 李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性.  , 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [13] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析.  , 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [14] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究.  , 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [15] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究.  , 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [16] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究.  , 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [17] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析.  , 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [18] 刘虹雯, 刘赛锦, 侯士敏, 刘惟敏, 薛增泉, 吴锦雷, 施祖进, 顾镇南. 巴基葱的微观形态与电学特性研究.  , 2001, 50(1): 102-104. doi: 10.7498/aps.50.102
    [19] 陈熙琛, 管惟炎, 易孙圣, 王祖仑, 林影. 急冷Al-Si-Ge合金的微观结构及正常-超导转变特性.  , 1982, 31(2): 268-270. doi: 10.7498/aps.31.268
    [20] 古月. 高频离子源的一些特性.  , 1960, 16(2): 107-110. doi: 10.7498/aps.16.107
计量
  • 文章访问数:  6100
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map