-
In the THz frequency range,several new high effects will restrict diode high-frequency performance. With the thermionic emission theory and the tunnel theory,the high-frequency performance of epitaxial Schottky diodes is re-evaluated and the structure parameters are optimized with using the cut-off frequency as a figure of merit. The results show that when the operation frequency is higher than the plasma frequency,the diode is equivalent to a capacitance with losing the frequency mixing performance. With the increase of frequency,increasing the doping density of substrate can reduce the substrate plasma resonance effect. The plasma resonance frequency of epitaxial layer is an important factor but transit time effect must be considered. The higher operation frequency can be obtained through reducing the anode diameter and the epilayer thickness,and increasing the epilayer doping density. The results have an important reference value in developing the room temperature THz mixing diodes.
-
Keywords:
- terahertz /
- Schottky mixer diodes /
- skin effect /
- the plasma resonance effect
[1] Yao J Q,Lu Y,Zhang B G,Wang P 2005 Journal Optoelectronics and Laser 16 503 (in Chinese) [姚建铨、路 洋、张百钢、王 鹏 2005 光电子 〖2] Siegel P H 2007 IEEE Trans. Antennas Propag 55 2957
[2] Jacobs E L,Moyer S,Franck C C,DeLucia F C,Casto C,Petkie D T,Murrill S R,Halford C E 2006 Terahertz for Military and Security Applications Iv Orlando,USA,April 17—18,2006 p6212J
[3] Jia W L,Shi W,Qu G H,Sun X F 2008 Acta Phys. Sin. 57 5425 (in Chinese) [贾婉丽、施 卫、屈光辉、孙小芳 2008 57 5425]
[4] Hübers H W 2008 IEEE J. Sel. Top. Quantum Electron 12 378
[5] Zhang X B,Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌、施 卫 2008 57 4984]
[6] Bhapkar U V,Crowe T W 1992 IEEE Trans. microwave theory Tech 40 886
[7] Nozokido T,Chang J J,Mann C M,Suzuki T,Mizuno K 1994 Int. J. Infrared Milli. Waves 15 1851
[8] Brown E R,McIntosh K A,Nichols K B,Dennis C L 1995 Appl. Phys. Lett. 66 285
[9] Siles J V,Grajal J,Krozer V,Leone B 2005 Microwave Conference European,Oct. 4—6,2005 p4
[10] Crowe T W,Mattauch R J,Roser H P,Bishop W L,Peatman W C B,Liu X L 1992 Proc. the IEEE 80 1827
[11] Bozhkov V G 2003 Radiophysics and Quantum Electronics 46 631
[12] Hui K 2001 Ph.D.Dissertation (New Jersey:University of Virginia)
[13] Shur M 1989 GaAs Devices and Circuits (New York:Plenum Press) p92
[14] Sassen S,Witzigmann B,Wolk C,Brugger H 2000 IEEE Trans. Electron Devices 47 24
[15] Martin S,Nakamura B,Fung A,Smith P,Bruston J,Maestrini J,Maiwald F,Siegel P,Schlecht E,Mehdi I 2001 IEEE MTT-S Digest 1641
-
[1] Yao J Q,Lu Y,Zhang B G,Wang P 2005 Journal Optoelectronics and Laser 16 503 (in Chinese) [姚建铨、路 洋、张百钢、王 鹏 2005 光电子 〖2] Siegel P H 2007 IEEE Trans. Antennas Propag 55 2957
[2] Jacobs E L,Moyer S,Franck C C,DeLucia F C,Casto C,Petkie D T,Murrill S R,Halford C E 2006 Terahertz for Military and Security Applications Iv Orlando,USA,April 17—18,2006 p6212J
[3] Jia W L,Shi W,Qu G H,Sun X F 2008 Acta Phys. Sin. 57 5425 (in Chinese) [贾婉丽、施 卫、屈光辉、孙小芳 2008 57 5425]
[4] Hübers H W 2008 IEEE J. Sel. Top. Quantum Electron 12 378
[5] Zhang X B,Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌、施 卫 2008 57 4984]
[6] Bhapkar U V,Crowe T W 1992 IEEE Trans. microwave theory Tech 40 886
[7] Nozokido T,Chang J J,Mann C M,Suzuki T,Mizuno K 1994 Int. J. Infrared Milli. Waves 15 1851
[8] Brown E R,McIntosh K A,Nichols K B,Dennis C L 1995 Appl. Phys. Lett. 66 285
[9] Siles J V,Grajal J,Krozer V,Leone B 2005 Microwave Conference European,Oct. 4—6,2005 p4
[10] Crowe T W,Mattauch R J,Roser H P,Bishop W L,Peatman W C B,Liu X L 1992 Proc. the IEEE 80 1827
[11] Bozhkov V G 2003 Radiophysics and Quantum Electronics 46 631
[12] Hui K 2001 Ph.D.Dissertation (New Jersey:University of Virginia)
[13] Shur M 1989 GaAs Devices and Circuits (New York:Plenum Press) p92
[14] Sassen S,Witzigmann B,Wolk C,Brugger H 2000 IEEE Trans. Electron Devices 47 24
[15] Martin S,Nakamura B,Fung A,Smith P,Bruston J,Maestrini J,Maiwald F,Siegel P,Schlecht E,Mehdi I 2001 IEEE MTT-S Digest 1641
计量
- 文章访问数: 9649
- PDF下载量: 909
- 被引次数: 0