搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甚高频电容耦合氢等离子体特性研究

李艳阳 杨仕娥 陈永生 周建朋 李新利 卢景霄

引用本文:
Citation:

甚高频电容耦合氢等离子体特性研究

李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄

The study of capacitively-coupled hydrogen plasma at very high frequency

Li Yan-Yang, Yang Shi-E, Chen Yong-Sheng, Zhou Jian-Peng, Li Xin-Li, Lu Jing-Xiao
PDF
导出引用
  • 采用高H2稀释的SiH4等离子体放电, 特别是甚高频等离子体增强化学气相沉积技术是当前高速制备优质微晶硅薄膜的主流方法. 尽管在实验上取得了很大的突破, 但其沉积机理一直是研究的热点和难点. 本文通过建立二维时变的轴对称模型,在75 MHz放电频率下, 对与微晶硅沉积非常相关的甚高频电容耦合氢等离子体放电进行了数值模拟, 研究了沉积参数对等离子体特性的影响, 并与光发射谱(OES)在线监测结果进行了比较. 结果表明: 电子浓度 ne在等离子体体层中间区域最大, 而电子温度 Te及Hα与Hβ的数密度在体层和鞘层界面附近取极大值; 当气压从1 Torr (1 Torr=133.322 Pa)增大至5 Torr时, 等离子体电势单调降低, 在体层中间区域 ne先快速增大然后逐渐减小, Te先下降后趋于稳定; 随着放电功率从30 W增大到70 W, 电子浓度 ne及Hα与Hβ的数密度均线性增大, 而电子温度 Te基本保持不变; OES在线分析结果与模拟结果符合得很好.
    In the high rate deposition of device grade microcrystalline silicon films and their solar cells, plasma enhanced chemical vapor deposition excited using very high frequency (VHF) has become a mainstream method. Although, great breakthroughs in the experiment are achieved, the depositional mechanism is still a research hot spot and difficulty point. In this paper, the capacitively-coupled hydrogen plasma discharge at VHF is simulated. A two-dimensional, time-dependent axial symmetry model is adopted at a frequency of 75 MHz, and the influences of pressure and plasma power on hydrogen plasma characteristic are simulated. At the same time, the hydrogen plasma is monitored on-line using the optical emission spectrometry in experiment. The results show that the value of the electronic concentration ne takes a maximum in the middle of the plasma bulk, while the electron temperature Te and the number densities of Hα and Hβ each have a maximal value at the place near the sheath and plasma bulk; the potential decreases with pressure increasing from 1 Torr to 5 Torr, the electron concentration in the plasma bulk first increases with the increase of pressure, then decreases with the further increase of pressure, but the electron temperature first decreases and then keeps stable in plasma bulk; the electron concentrations, Hα and Hβ increase linely with power increasing from 30 W to 70 W, but the electron temperature keeps stable. The experimental results and simulation results are in good agreement.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB201606)和国家自然科学基金(批准号: 51007082)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB201606) and the National Natural Science Foundation of China (Grant No. 51007082).
    [1]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283

    [2]

    Novikova T, Kalache B, Bulkin P, Hassouni K, Morscheidt W, Cabarrocas P R I 2003 J. Appl. Phys. 93 3198

    [3]

    Bhandarkar U V, Swihart M T, Girshick S L, Kortshagen U R 2000 J. Phys. D: Appl. Phys. 33 2731

    [4]

    Bleecker K D, Bogaerts A, Goedheer W, Gijbels R 2004 Phys. Rev. E 69 056409

    [5]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8

    [6]

    Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J H M, Bezemer J 1997 J. Appl. Phys. 82 2060

    [7]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018

    [8]

    Ge H, Zhang X D, Yue Q, Zhao Y 2008 Acta Phys. Sin. 57 5105 (in Chinese) [葛洪, 张晓丹, 岳强, 赵颖 2008 57 5105]

    [9]

    Zhang X D, Zhang F R, Amanatides E, Mataras D, Zhao Y 2008 Thin Solid Films 516 6829

    [10]

    Marques L, Jolly J, Alves L L 2007 J. Appl. Phys. 102 063305

    [11]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J 2008 Phys. Chem. Ref. Data 37 913

    [12]

    Guo L H, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116

    [13]

    Michael A, Allen J L (translated by Pu Y K et al.) 2007 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔·A·力伯曼, 阿伦·J·里登伯格 著, 蒲以康等译 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [14]

    Chingsungnoen A, Wilson J I B, Amornkitbamrung V, Thomas C, Burinprakhon T 2007 Plasma Sources Sci. Technol. 16 434

  • [1]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283

    [2]

    Novikova T, Kalache B, Bulkin P, Hassouni K, Morscheidt W, Cabarrocas P R I 2003 J. Appl. Phys. 93 3198

    [3]

    Bhandarkar U V, Swihart M T, Girshick S L, Kortshagen U R 2000 J. Phys. D: Appl. Phys. 33 2731

    [4]

    Bleecker K D, Bogaerts A, Goedheer W, Gijbels R 2004 Phys. Rev. E 69 056409

    [5]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8

    [6]

    Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J H M, Bezemer J 1997 J. Appl. Phys. 82 2060

    [7]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018

    [8]

    Ge H, Zhang X D, Yue Q, Zhao Y 2008 Acta Phys. Sin. 57 5105 (in Chinese) [葛洪, 张晓丹, 岳强, 赵颖 2008 57 5105]

    [9]

    Zhang X D, Zhang F R, Amanatides E, Mataras D, Zhao Y 2008 Thin Solid Films 516 6829

    [10]

    Marques L, Jolly J, Alves L L 2007 J. Appl. Phys. 102 063305

    [11]

    Yoon J S, Song M Y, Han J M, Hwang S H, Chang W S, Lee B J 2008 Phys. Chem. Ref. Data 37 913

    [12]

    Guo L H, Kondo M, Fukawa M, Saitoh K, Matsuda A 1998 Jpn. J. Appl. Phys. 37 L1116

    [13]

    Michael A, Allen J L (translated by Pu Y K et al.) 2007 Principles of Plasma Discharge and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔·A·力伯曼, 阿伦·J·里登伯格 著, 蒲以康等译 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [14]

    Chingsungnoen A, Wilson J I B, Amornkitbamrung V, Thomas C, Burinprakhon T 2007 Plasma Sources Sci. Technol. 16 434

  • [1] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [2] 陈国华, 石科军, 储进科, 吴昊, 周池楼, 肖舒. 环形磁场金属等离子体源冷却流场的数值模拟与优化.  , 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [3] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [4] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟.  , 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [5] 李书磊, 邱实, 石立华, 李云, 段艳涛. 基于正交传播算子的闪电宽带甚高频辐射源定位方法研究.  , 2019, 68(16): 165202. doi: 10.7498/aps.68.20190522
    [6] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法.  , 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [7] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正.  , 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [8] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究.  , 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [9] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断.  , 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [10] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [11] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟.  , 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [12] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟.  , 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [13] 张发荣, 张晓丹, Amanatides E., Mataras D., 赵 静, 赵 颖. 微晶硅薄膜沉积过程中的等离子体光学与电学特性研究.  , 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [14] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟.  , 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [15] 郭文琼, 周晓军, 张雄军, 隋 展, 吴登生. 等离子体电极普克尔盒电光开关单脉冲过程数值模拟.  , 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [16] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究.  , 2005, 54(1): 445-449. doi: 10.7498/aps.54.445
    [17] 段耀勇, 郭永辉, 王文生, 邱爱慈. 钨丝阵等离子体Z箍缩的数值模拟.  , 2004, 53(8): 2654-2660. doi: 10.7498/aps.53.2654
    [18] 袁行球, 李 辉, 赵太泽, 王 飞, 郭文康, 须 平. 超音速等离子体炬的数值模拟.  , 2004, 53(3): 788-792. doi: 10.7498/aps.53.788
    [19] 杨恢东, 吴春亚, 李洪波, 麦耀华, 朱 锋, 周祯华, 赵 颖, 耿新华, 熊绍珍. VHF等离子体光发射谱(OES)的在线监测.  , 2003, 52(9): 2324-2330. doi: 10.7498/aps.52.2324
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟.  , 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  6822
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-04
  • 修回日期:  2011-12-23
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map