-
激光诱导击穿光谱(LIBS)作为一种重要的分析手段被广泛应用于材料分析、环境监测等领域.特别是随着大气污染问题的日趋严重,基于LIBS的大气污染在线监测分析技术快速发展,氮气等离子体特性的时间演化规律对研究激光诱导大气等离子体动力学和发展大气污染监测的LIBS技术具有重要意义.而温度和电子数密度作为表征等离子体状态最重要的参数,直接影响着等离子体形成、膨胀和退化中的动力学过程以及等离子体中的能量传输效率.本文利用等离子体时间分辨光谱,研究了连续背景辐射、分子谱线强度及信背比(分子谱线与连续背景辐射的比值)在等离子体演化过程中的变化规律,结果显示连续背景辐射寿命在700 ns左右,N2+(B2u+-X2g+,v:0-0)跃迁谱线强度在1215 s范围内达到最大值,信背比随时间呈现上升、稳定的趋势,因此利用N2+分子离子第一负带系(B2u+-X2g+)研究等离子体温度的观测窗口应选择在1025 s之间;基于双原子光谱理论,通过拟合实测光谱和仿真光谱研究了大气压下激光诱导氮气等离子体温度随时间的演化趋势,由于辐射损耗远小于碰撞作用,在1028 s内等离子体温度从约10000 K按指数衰减到约6000 K;在准确测定仪器展宽线型的基础上,利用Nelder-Mead单纯形算法,研究了N原子746.831 nm谱线的Stark展宽和位移随时间的演化趋势,计算了等离子体中电子数密度随时间在10171016 cm-3量级间衰减,通过分析发现造成等离子体中电子数衰减的主要机理是三体碰撞复合.As an important analytical tool, laser-induced breakdown spectroscopy (LIBS) has been widely used in material analysis, environmental monitoring, and other fields. In recent years, due to increasingly serious air pollution, various LIBS-based on-line air pollution detection techniques are being developed. The temporal evolution of nitrogen plasma characteristics is of great importance for investigating the atmospheric plasma dynamics and developing the LIBS-based air pollution monitoring techniques. Temperature and electron density, which are the most important parameters of a plasma state, directly influence the kinetic behaviors of plasma formation, expansion and degradation processes, as well as the energy transfer efficiency in plasma. In this paper, the temporal evolutions of continuous background radiation, molecular spectral strength, and signal-to-background ratio (SBR) are studied based on time-resolved spectra. The results show that the lifetime of the continuous background radiation is about 700 ns, the N2+(B2u+-X2g+, v: 0-0) transition line strength reaches a maximum value within 12-15 s, the SBR first increases and then stabilizes. Accordingly, the optimal observation period for N2+(B2u+-X2g+) band system based plasma temperature investigation should be selected to be between 10 and 25 s. The temporal evolution of plasma temperature is determined by fitting experimental spectra to theoretical ones simulated by LIFBASE (a spectral simulation program). As the radiation loss is less than the loss due to the collision cooling, the plasma temperature decays exponentially from ~10000 K to ~6000 K within 10-28 s. By taking into account the instrumental broadening lineshape (Voigt lineshape), the temporal evolutions of Stark broadening and Stark shift of N 746.831 nm atomic line are obtained via Nelder-Mead simplex algorithm, and then the electron density is calculated accordingly. The results show that the electron density decays between 1017 and 1016 cm-3 in magnitude. By comparing the experimental electron decay rate with theoretical values calculated from different mechanisms, it is concluded that a three-body collision recombination is the main mechanism of electron decay.
-
Keywords:
- laser-induced breakdown spectroscopy /
- time-resolved /
- plasma temperature /
- electron density
[1] Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (Chichester: John Wiley Sons Ltd) p3
[2] Samek O, Beddows D C S, Kaiser J, Kukhlevsky S V, Lika M, Telle H H, Young J 2000 Opt. Eng. 39 2248
[3] Ayyalasomayajula K K, Fang Y Y, Singh J P, McIntyre D L, Jain J 2012 Appl. Opt. 51 149
[4] Tran M, Smith B W, Hahn D W, Winefordner J D 2001 Appl. Spectrosc. 55 1455
[5] Pichahchy A E, Cremers D A, Ferris M J 1997 Spectrochim. Acta B 52 25
[6] Sturm V, Noll R 2003 Appl. Opt. 42 6221
[7] Huddlestone R H, Leondard S L 1965 Plasma Diagnostic Techniques (New York: Academic Press) p87
[8] Lenk A, Witke T, Granse G 1996 Appl. Surf. Sci. 96 195
[9] Alam R C, Fletcher S J, Wasserman K R, Hwel L 1990 Phys. Rev. A 42 383
[10] Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Ppin H, Kieffer J C, Mercure H P 2002 Appl. Sepctrosc. 56 1444
[11] Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 63 205205]
[12] LIFBASE: Database and Spectral Simulation Program Luque J, Crosley D R https://www.sri.com/engage/products-solutions/lifbase [2017-1-19]
[13] Sarrette J P, Gomes A M, Bacri J, Laux C O, Kruger C H 1995 J. Quant. Spectrosc. Ra. 53 125
[14] Babou Y, Rivire P, Perrin M Y, Soufiani A 2009 J. Quant. Spectrosc. Ra. 110 89
[15] Flagan R C, Appleton J P 1972 J. Chem. Phys. 56 1163
[16] Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 61 123301]
[17] Staack D, Farouk B, Gutsol A F, Fridman A A 2006 Plasma Sources Sci. Technol. 15 818
[18] Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)
[19] Gleizes A, Gonzalez J J, Liani B, Raynal G 1993 J. Phys. D 26 1921
[20] Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[21] Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (England: John Wiley Sons) p28
[22] Nelder J A, Mead R 1965 Comput. J. 7 308
[23] Ida T, Ando M, Toraya H 2000 J. Appl. Crystallogr. 33 1311
[24] Griem H R 1974 Spectral Line Broadeningby Plasmas (New York: Academic Press) p333
[25] Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D 37 2686
[26] Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Elect. 31 599
[27] Bourdon A, Teresiak Y, Vervisch P 1998 Rhys. Rev. E 57 4684
-
[1] Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (Chichester: John Wiley Sons Ltd) p3
[2] Samek O, Beddows D C S, Kaiser J, Kukhlevsky S V, Lika M, Telle H H, Young J 2000 Opt. Eng. 39 2248
[3] Ayyalasomayajula K K, Fang Y Y, Singh J P, McIntyre D L, Jain J 2012 Appl. Opt. 51 149
[4] Tran M, Smith B W, Hahn D W, Winefordner J D 2001 Appl. Spectrosc. 55 1455
[5] Pichahchy A E, Cremers D A, Ferris M J 1997 Spectrochim. Acta B 52 25
[6] Sturm V, Noll R 2003 Appl. Opt. 42 6221
[7] Huddlestone R H, Leondard S L 1965 Plasma Diagnostic Techniques (New York: Academic Press) p87
[8] Lenk A, Witke T, Granse G 1996 Appl. Surf. Sci. 96 195
[9] Alam R C, Fletcher S J, Wasserman K R, Hwel L 1990 Phys. Rev. A 42 383
[10] Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Ppin H, Kieffer J C, Mercure H P 2002 Appl. Sepctrosc. 56 1444
[11] Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 63 205205]
[12] LIFBASE: Database and Spectral Simulation Program Luque J, Crosley D R https://www.sri.com/engage/products-solutions/lifbase [2017-1-19]
[13] Sarrette J P, Gomes A M, Bacri J, Laux C O, Kruger C H 1995 J. Quant. Spectrosc. Ra. 53 125
[14] Babou Y, Rivire P, Perrin M Y, Soufiani A 2009 J. Quant. Spectrosc. Ra. 110 89
[15] Flagan R C, Appleton J P 1972 J. Chem. Phys. 56 1163
[16] Zhai X D, Ding Y J, Peng Z M, Luo R 2012 Acta Phys. Sin. 61 123301 (in Chinese) [翟晓东, 丁艳军, 彭志敏, 罗锐 2012 61 123301]
[17] Staack D, Farouk B, Gutsol A F, Fridman A A 2006 Plasma Sources Sci. Technol. 15 818
[18] Laux C O 1993 Ph. D. Dissertation (Stanford: Stanford University)
[19] Gleizes A, Gonzalez J J, Liani B, Raynal G 1993 J. Phys. D 26 1921
[20] Laux C O, Spence T G, Kruger C H, Zare R N 2003 Plasma Sources Sci. Technol. 12 125
[21] Cremers D A, Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (England: John Wiley Sons) p28
[22] Nelder J A, Mead R 1965 Comput. J. 7 308
[23] Ida T, Ando M, Toraya H 2000 J. Appl. Crystallogr. 33 1311
[24] Griem H R 1974 Spectral Line Broadeningby Plasmas (New York: Academic Press) p333
[25] Soubacq S, Pignolet P, Schall E, Batina J 2004 J. Phys. D 37 2686
[26] Zhao X M, Diels J C, Wang C Y, Elizondo J M 1995 IEEE J. Quantum Elect. 31 599
[27] Bourdon A, Teresiak Y, Vervisch P 1998 Rhys. Rev. E 57 4684
计量
- 文章访问数: 8337
- PDF下载量: 497
- 被引次数: 0