-
Mo掺杂ZnO的吸收光谱红移和蓝移两种相互冲突的实验结果均有报道,但是仍然没有合理解释.为了解决该问题,本文采用基于密度泛函理论的广义梯度近似平面波超软赝势+U方法,用第一性原理分析了Zn0.9583Mo0.0417O,Zn0.9375Mo0.0625O,Zn14Mo2O的能带结构、态密度和吸收光谱分布.结果表明,Mo掺杂量为2.08 at%3.13 at%的范围内,随着掺杂量的增加,体系的体积逐渐增大,形成能逐渐升高,稳定性逐渐下降,掺杂逐渐困难.与此同时,所有掺杂体系均转化为n型简并半导体.与未掺杂ZnO相比,掺杂体系的带隙均变窄,吸收光谱均发生红移,Mo掺杂量越增加,掺杂体系带隙变窄减弱、吸收光谱红移减弱、电子有效质量越减小、电子浓度越减小、电子迁移率越减小、电子电导率越减小.同时,磁矩减小,掺杂体系的居里温度能达到室温以上.The experimental results of red-shift and blue-shift in absorption spectrum of Mo-doped ZnO are in mutual contradiction, and this phenomenon has not been explained rationally so far. For explaining this phenomenon, we analyze the energy band structure, state density, and absorption-spectrum distributions for each of Zn0.9583Mo0.0417O, Zn0.9375Mo0.0625O and Zn14Mo2O by first-principles calculation. The results show that within a limited doping amount range of 2.08 at%-3.13 at%, the higher Mo doping amount results in higher doping system volume, higher formation energy, lower system stability, and more difficult to dope. Meanwhile, all doping systems are converted into n-type degenerate semiconductors. Compared with the band gap of pure ZnO, the band gap of each doping system becomes narrow and the absorption spectrum shows red-shift. The higher the Mo doping amount, the weaker the narrowing of band gap becomes and the weaker the red-shift in absorption spectrum as well as the lower the electronic effective mass and the lower the electronic concentration; the lower the electronic mobility, the lower the electronic conductivity is; the lower the electronic magnetic moment is. The Curie temperature of doping system can reach a temperature higher than room temperature.
-
Keywords:
- Mo doped ZnO /
- first principals /
- absorption spectrum /
- electronic conductivity
[1] Rai R C 2013 J. Appl. Phys. 113 153508
[2] Li Z X, Rong Z 2015 Chin. Phys. B 24 107703
[3] Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791
[4] Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847
[5] Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372
[6] Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61
[7] Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507
[8] Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282
[9] Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012
[10] Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126
[11] Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171
[12] Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150
[13] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802
[14] Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365
[15] Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15
[16] Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513
[17] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973
[18] Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730
[19] Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675
[20] Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63
[21] Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205
[22] Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993
[23] Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269
[24] Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357
[25] Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1
[26] Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56
[27] Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]
[28] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[29] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107
[30] Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343
[31] Pickett W E, Moodera J S 2001 Phys. Today 54 39
[32] Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937
[33] Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633
[34] Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212
[35] Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054
[36] Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649
-
[1] Rai R C 2013 J. Appl. Phys. 113 153508
[2] Li Z X, Rong Z 2015 Chin. Phys. B 24 107703
[3] Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791
[4] Wu Y H, Li C P, Li M J, Li H J, Sheng X, Wu X G, Yang B H 2016 Ceram. Int. 42 10847
[5] Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sensor. Actuat. B: Chem. 224 372
[6] Soumahoro I, Colis S, Schmerber G, Leuvrey C, Barre S, Ulhaq-Bouillet C, Muller D, Abd-lefdil M, Hassanain N, Petersen J, Berrada A, Slaoui A, Dinia A 2014 Thin Solid Films 566 61
[7] Umar K, Aris A, Parveen T, Jaafar J, Majid Z A, Reddy A V B, Taliba J 2015 Appl. Catal. A: Gen. 505 507
[8] Boukhachem A, Ouni B, Karyaoui M, Madani A, Chtourou R, Amlouk M 2012 Mater. Sci. Semicond. Process. 15 282
[9] Wu C G, Shen J, Ma J, Wang S, Zhang Z J, Yang X L 2009 Semicond. Sci. Technol. 24 125012
[10] Gokulakrishnan V, Parthiban S, Jeganathan K, Ramamurthi K 2011 Ferroelectrics 423 126
[11] Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J 2016 Sol. Energy Mater. Sol. Cells 145 171
[12] Ravichandran K, Anbazhagan A, Baneto M, Dineshbabu N, Ravidhas, Muruganandam G 2016 Mater. Sci. Semicond. Process. 41 150
[13] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C 2012 Sci. China. Chem. 55 1802
[14] Mekki A, Tabet N 2014 Acta Phys. Pol. A 125 365
[15] Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15
[16] Foreman J V, Simmons J G, Baughman W E, Liu J, Everitt H O 2013 J. Appl. Phys. 113 133513
[17] Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973
[18] Srinivasarao K, Srinivasarao G, Madhuri K V, Murthy K K, Mukhopadhyay P K 2013 Indian J. Eng. Mater. Sci. 2013 684730
[19] Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescu V S 2004 J. Mater. Sci. 39 675
[20] Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63
[21] Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205
[22] Feng Y, Huang B J, Li S S, Zhang B M, Ji W X, Zhang C W, Wang P J 2015 J. Mater. Sci. 50 6993
[23] Roth A P, Webb J B, Williams D F 1981 Solid. State. Commun. 39 1269
[24] Shi J L, Ma H, Ma G H, Ma H L, Shen J 2008 Appl. Phys. A 92 357
[25] Jayabharathi J, Karunakaran C, Kalaiarasi V, Ramanathan P 2014 J. Photoch. Photobio. A 295 1
[26] Harun K, Mansor N, Yaakob M K, Taib M F M, Ahmad Z A, Mohamad A A 2016 J. Sol. Gel.Sci. Technol. 80 56
[27] Qu L F, Hou Q Y, Xu Z C, Zhao C W 2016 Acta Phys. Sin. 65 157201 (in Chinese) [曲灵丰, 侯清玉, 许镇潮, 赵春旺 2016 65 157201]
[28] Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 59 4925]
[29] Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107
[30] Gu X Q, Zhu L P, Ye Z Z, Ma Q B, He H P, Zhang Y Z, Zhao B H 2008 Sol. Energy Mater. Sol. Cells 92 343
[31] Pickett W E, Moodera J S 2001 Phys. Today 54 39
[32] Abdel-Baset T A, Fang Y W, Duan C G, Abdel-Hafiez M 2016 J. Supercond. Nov. Magn. 29 1937
[33] Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633
[34] Schleife A, Fuchs F, Furthmller J 2006 Phys. Rev. B 73 245212
[35] Robertson J, Xiong K, Clark S J 2006 Phys. Status Solidi (b) 243 2054
[36] Ravichandran K, Anbazhagan A, Dineshbabu N, Ravidhaset C 2015 J. Mater. Sci.-Mater. Electron. 26 7649
计量
- 文章访问数: 7973
- PDF下载量: 353
- 被引次数: 0