搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性吸收介质非局域线性电光效应的耦合波理论

吴丹丹 佘卫龙

引用本文:
Citation:

线性吸收介质非局域线性电光效应的耦合波理论

吴丹丹, 佘卫龙

Wave coupling theory of nonlocal linear electro-optic effect in a linear absorbent medium

Wu Dan-Dan, She Wei-Long
PDF
导出引用
  • 本文提出了线性吸收介质非局域线性电光效应的耦合波理论,建立了相应的耦合波方程组,并求解了该方程组.由此,可给出在任意方向外加电场的作用下,光在具有空间非局域响应的线性吸收介质中沿任意方向传播时出射光场的表达式.据此,研究了线性吸收是如何改变出射光场的两个偏振分量的振幅、相位和波形的.进一步讨论了线性吸收对电光强度调制的影响,以及如何测量一阶线性和二阶非线性极化率非局域响应的特征长度和介质的线性吸收系数.
    Being an important optical phenomenon, the linear electro-optic effect has diverse applications in the optical modulation and optical switching. The refractive index ellipsoid theory has been widely used to study the linear electro-optic effect for a long time. Despite of its visualization such a theory has limitations and cannot deal with a lot of cases in which the linear absorption cannot be neglected, or the electric displacement vector has a nonlocal response to electric field, etc. To overcome such shortcomings, in 2001 a wave coupling theory of linear electro-optic effect was developed by She and Lee (She W, Lee W 2001 Opt. Commun. 195 303). And in 2016 we generalized this wave coupling theory to the treatment of nonlocal linear electro-optic effect in which the displacement vector has a nonlocal response to electric field. In this paper, we use this wave-coupling theory to investigate how the linear absorption influences the linear electro-optic effect in a nonlocal medium. Starting from Maxwell's equations and considering the linear absorption and the nonlocality of the susceptibility tensors, we obtain two coupling equations for two orthogonal linear polarized waves and also analytical solutions of the resulting equations, which can be used to describe the nonlocal linear electro-optic effect for a light beam propagating along any direction, with an external direct current electric field applied along an arbitrary direction in a linear absorbent crystal. With such solutions, we study the influences of the linear absorption on the phase, amplitude, shape of the output beam, as well as the half-wave voltage and the extinction ratio of electro-optic modulation. The results show that no matter whether there exists linear absorption, the Rayleigh distance of the Gaussian beam in the crystal will be shortened as a result of the nonlocality of (1). When linear-absorption coefficients 11 and 22 are equal, the linear absorption damps equally the amplitudes of the two polarized output beams with keeping their phases and shapes unchanged. So in the case of 11=22, just as in a lossless medium, the phenomenon that the output beam is no longer a Gaussian beam in an electro-optic amplitude modulation scheme can be considered as a possible signal of the nonlocal response of (2). More interestingly, when 1122, the linear absorption not only reduces the amplitudes of output beams, but also changes their phases and shapes. In such a case one need to measure the nonlocal characteristic length of (2) to judge whether (2) has a nonlocal response. Finally, in the case of 1122, as a result of linear absorption, the extinction ratio is reduced, but the half-wave voltage keeps nearly unchanged in an electro-optic amplitude modulation scheme. Besides the discussion on the influence of the linear absorption, we also make suggestions of how to measure the nonlocal characteristic lengths of (1) and (2) and the absorption coefficients 11 and 22.
      通信作者: 佘卫龙, shewl@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274401)资助的课题.
      Corresponding author: She Wei-Long, shewl@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274401).
    [1]

    Yariv A 1988 Quantum Electronics (3rd Ed.) (New York: Wiley) pp1-17, 105-135

    [2]

    van der Valk N C J, Wenckebach T, Planken P C M 2004 J. Opt. Soc. Am. B 21 622

    [3]

    Chen L, Xu Q, Wood M G, Reano R M 2014 Optica 1 112

    [4]

    Borshch V, Shiyanovskii S V, Li B X, Lavrentovich O D 2014 Phys. Rev. E 90 062504

    [5]

    Zhang X, Chung C, Hosseini A, Subbaraman H, Luo J, Jen A K, Nelson R L, Lee C Y, Chen R T 2015 J. Lightwave Technol. 34 2941

    [6]

    Wang J, Li P, Weng S, Wu L, Ning T, Li J 2016 Chin. Opt. Let. 14 100603

    [7]

    Liu K, Shi J, Zhou Z, Chen X 2009 Opt. Commun. 282 1207

    [8]

    Gobert O, Paul P M, Hergott J F, Tcherbakoff O, Lepetit F, Oliveira P D, Viala F, Comte M 2011 Opt. Express 19 5410

    [9]

    Qian S X, Wang G M 2002 Nonlinear Optics (1st Ed.) (Shanghai: Fudan University Press) pp334-343 (in Chinese) [钱士雄, 王恭明 2002 非线性光学 (第一版) (上海: 复旦大学出版社) 第334343页]

    [10]

    Yariv A 1973 IEEE J. Quantum Elect. 9 919

    [11]

    Nelson D F 1975 J. Opt. Soc. Am. 65 1144

    [12]

    Gunning M J, Raab R E 1998 Appl. Opt. 37 8438

    [13]

    She W, Lee W 2001 Opt. Commun. 195 303

    [14]

    Wu D D, Chen H B, She W L, Lee W K 2005 J. Opt. Soc. Am. B 22 2366

    [15]

    Zheng G, She W 2006 Opt. Commun. 268 323

    [16]

    Zheng G, Wang H, She W 2006 Opt. Express 14 5535

    [17]

    Chen L, Zheng G, Xu J, Zhang B, She W 2006 Opt. Lett. 31 3474

    [18]

    Huang D, She W 2007 Opt. Express 15 8275

    [19]

    Tang H, Chen L, She W 2010 Opt. Express 18 25000

    [20]

    Wu D, She W 2016 Opt. Express 24 2867

    [21]

    Wang G, Wang R 2013 Appl. Phys. Lett. 102 021906

    [22]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602

    [23]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J. Opt. Soc. Am. B 6 S288

    [24]

    Haus H A 1984 Waves and Fields in Optoelectronics (1st Ed.) (New Jersey: Prentice-Hall) pp81-157

    [25]

    Mitrofanov O, Gasparyan A, Pfeiffer L N, West K W 2005 Appl. Phys. Lett. 86 202103

  • [1]

    Yariv A 1988 Quantum Electronics (3rd Ed.) (New York: Wiley) pp1-17, 105-135

    [2]

    van der Valk N C J, Wenckebach T, Planken P C M 2004 J. Opt. Soc. Am. B 21 622

    [3]

    Chen L, Xu Q, Wood M G, Reano R M 2014 Optica 1 112

    [4]

    Borshch V, Shiyanovskii S V, Li B X, Lavrentovich O D 2014 Phys. Rev. E 90 062504

    [5]

    Zhang X, Chung C, Hosseini A, Subbaraman H, Luo J, Jen A K, Nelson R L, Lee C Y, Chen R T 2015 J. Lightwave Technol. 34 2941

    [6]

    Wang J, Li P, Weng S, Wu L, Ning T, Li J 2016 Chin. Opt. Let. 14 100603

    [7]

    Liu K, Shi J, Zhou Z, Chen X 2009 Opt. Commun. 282 1207

    [8]

    Gobert O, Paul P M, Hergott J F, Tcherbakoff O, Lepetit F, Oliveira P D, Viala F, Comte M 2011 Opt. Express 19 5410

    [9]

    Qian S X, Wang G M 2002 Nonlinear Optics (1st Ed.) (Shanghai: Fudan University Press) pp334-343 (in Chinese) [钱士雄, 王恭明 2002 非线性光学 (第一版) (上海: 复旦大学出版社) 第334343页]

    [10]

    Yariv A 1973 IEEE J. Quantum Elect. 9 919

    [11]

    Nelson D F 1975 J. Opt. Soc. Am. 65 1144

    [12]

    Gunning M J, Raab R E 1998 Appl. Opt. 37 8438

    [13]

    She W, Lee W 2001 Opt. Commun. 195 303

    [14]

    Wu D D, Chen H B, She W L, Lee W K 2005 J. Opt. Soc. Am. B 22 2366

    [15]

    Zheng G, She W 2006 Opt. Commun. 268 323

    [16]

    Zheng G, Wang H, She W 2006 Opt. Express 14 5535

    [17]

    Chen L, Zheng G, Xu J, Zhang B, She W 2006 Opt. Lett. 31 3474

    [18]

    Huang D, She W 2007 Opt. Express 15 8275

    [19]

    Tang H, Chen L, She W 2010 Opt. Express 18 25000

    [20]

    Wu D, She W 2016 Opt. Express 24 2867

    [21]

    Wang G, Wang R 2013 Appl. Phys. Lett. 102 021906

    [22]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602

    [23]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J. Opt. Soc. Am. B 6 S288

    [24]

    Haus H A 1984 Waves and Fields in Optoelectronics (1st Ed.) (New Jersey: Prentice-Hall) pp81-157

    [25]

    Mitrofanov O, Gasparyan A, Pfeiffer L N, West K W 2005 Appl. Phys. Lett. 86 202103

  • [1] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子.  , 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [2] 田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉. 谐振型电光相位调制及光电探测功能器件的研发及应用.  , 2023, 72(14): 148502. doi: 10.7498/aps.72.20230485
    [3] 李森清, 张肖, 林机. 熔融耦合器中耦合模式与新型孤子结构.  , 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273
    [4] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法.  , 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [5] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量.  , 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [6] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究.  , 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [7] 钟东洲, 邓涛, 郑国梁. 双信道偏振复用保密通信系统的完全混沌同步的操控性研究.  , 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [8] 李长胜. 晶体的双参量调制及其应用.  , 2014, 63(7): 074207. doi: 10.7498/aps.63.074207
    [9] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析.  , 2014, 63(2): 024204. doi: 10.7498/aps.63.024204
    [10] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究.  , 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [11] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [12] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿.  , 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [13] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控.  , 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [14] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器.  , 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [15] 邵毅全, 郭 旗. 相位调制高斯光束在强非局域非线性介质中的传输特性.  , 2006, 55(6): 2751-2759. doi: 10.7498/aps.55.2751
    [16] 张洪钧, 戴建华, 杨君慧, 高存秀. 双稳液晶电光调制器.  , 1981, 30(6): 810-819. doi: 10.7498/aps.30.810
    [17] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算.  , 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
    [18] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅱ)——利用(IO3)-1离子基团的分子轨道计算α-LiIO3晶体的倍频系数.  , 1977, 26(2): 124-132. doi: 10.7498/aps.26.124
    [19] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅲ)——利用畸变氧八面体的离子基团模型计算LiNbO3,LiTaO3,KNbO3,BNN晶体的电光和倍频系数.  , 1977, 26(6): 486-499. doi: 10.7498/aps.26.486
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅰ)——利用氧八面体畸变模型计算BaTiO3晶体电光及倍频系数.  , 1976, 25(2): 146-161. doi: 10.7498/aps.25.146
计量
  • 文章访问数:  6131
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-11-15
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map