搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融耦合器中耦合模式与新型孤子结构

李森清 张肖 林机

引用本文:
Citation:

熔融耦合器中耦合模式与新型孤子结构

李森清, 张肖, 林机

Coupled mode and novel soliton structure in fused coupler

Li Sen-Qing, Zhang Xiao, Lin Ji
PDF
HTML
导出引用
  • 研究了非局域非线性熔融耦合器的耦合模式构建新型孤子结构和稳定性的关联性. 对于高斯型耦合模式, 存在多极类亮孤子、平顶孤子和多极灰孤子结构. 一至三极对称峰值的类亮孤子、灰孤子和平顶孤子传播是稳定的, 孤子峰值不同的三极类亮孤子和三极灰孤子均不能稳定. 研究发现灰度将影响灰孤子传播的稳定性. 通过调制耦合函数宽度, 可实现孤子结构的转换.
    In this paper, we investigate the characteristics of bright-like solitons, flat-topped solitons, and gray solitons in nonlocal nonlinear fused coupler. Firstly, the fundamental bright-like solitons with different parameters are obtained by the Newton iteration. It is found that the peak value and beam width of the ground state bright-like soliton increase with the enhancement of the nonlocality degree and nonlinear parameter, and they decrease with the propagation constant increasing. The power of the ground state bright-like soliton increases with the increase of the nonlocality degree and the width of coupling function, and it decreases with the propagation constant increasing. These numerical results can also be verified in the case of multipolar bright-like solitons. Secondly, by changing the coupled mode, the solutions of multipolar bright-like solitons, flat-topped soliton and grey solitons are obtained. The transmission stability of multipolar bright-like solitons, flat-topped soliton and grey solitons are studied. The stability of solitons is verified by means of linear stability analysis and fractional Fourier evolution. In the process of long-distance propagation, the propagation of bright-like solitons, gray solitons, and flat-topped soliton with one to three-pole symmetric peaks are stable, and the tripolar bright-like solitons with different soliton peaks and tripolar gray solitons are unable to transmit steadily. At the same time, it is found that the gray soliton with three poles or more is not easy to maintain its transmission stability. It is also found that the higher the grey scale of the gray soliton, the easier it is to realize stable transmission. Finally, it is found that the coupling function width not only affects the power of the soliton, but also realize the conversion among different soliton structures by adjusting the coupling function width.
      通信作者: 林机, linji@zjnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11835011, 12004338)资助的课题
      Corresponding author: Lin Ji, linji@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11835011, 12004338)
    [1]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [2]

    Yang Z J, Zhang S M, Li X L, Pang Z G, Bu H X 2018 Nonlinear Dynam. 94 2563Google Scholar

    [3]

    Yang Z J, Zhang S M, Li X L, Pang Z G 2018 Appl. Math. Lett. 82 64Google Scholar

    [4]

    Wang Q, Liang G 2020 J. Opt. 22 055501Google Scholar

    [5]

    Liang G, Wang Q 2021 New J. Phys. 23 103036Google Scholar

    [6]

    郑一凡, 黄光侨, 林机 2018 67 214207Google Scholar

    Zheng Y F, Huang G Q, Lin J 2018 Acta Phys Sin. 67 214207Google Scholar

    [7]

    Dong L W, Ye F W 2010 Phys. Rev. A 81 013815Google Scholar

    [8]

    Wang Q, Deng Z Z 2020 Results Phys. 17 103056Google Scholar

    [9]

    Shi Z W, Li H G, Guo Q 2011 Phys. Rev. A 83 023817Google Scholar

    [10]

    龙学文, 胡巍, 张涛, 郭旗, 兰胜, 高喜存 2007 56 1397Google Scholar

    Long X W, Hu W, Zhang T, Guo Q, Lan S, Gao X C 2007 Acta Phys Sin. 56 1397Google Scholar

    [11]

    Shen M, Gao J S, Ge L J 2015 Sci. Rep. 5 9814Google Scholar

    [12]

    Horikisi T P, Frantzeskaki D J 2016 Opt. Lett. 41 583Google Scholar

    [13]

    Taillaert D, Harold C, Borel P I, Frandsen L H, De L R 2003 IEEE Photonics Technol. Lett. 15 1249Google Scholar

    [14]

    Nistazakis H E, Frantzeskakis D J, Atai J, Malomed A B, Efremidis N, Hizanidis K 2002 Phys. Rev. E 65 036605Google Scholar

    [15]

    Zhu X, Yang T, Chi P L, Xu R 2020 IEEE Trans. Microwave Theory Tech. 68 1Google Scholar

    [16]

    Shiva K, Mohammad D, Pejman R 2020 Plasmonics 15 869Google Scholar

    [17]

    Barnoski M K, Friedrich H R 1976 Appl. Opt. 15 2629Google Scholar

    [18]

    肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明 2015 64 204207Google Scholar

    Xiao Y L, Liu Y G, Wang Z, Liu X Q, Luo M M 2015 Acta Phys. Sin. 64 204207Google Scholar

    [19]

    Jung Y, Chen R, Ismaeel R, Brambilla G, Alam S, Giles I and Richardson D 2013 Opt. Express 21 24326Google Scholar

    [20]

    Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G 2014 Opt. Express 22 11610Google Scholar

    [21]

    Yao S 2018 IEEE Photonics Technol. Lett. 30 99Google Scholar

    [22]

    Srivastava H M, Baleanu D, Machado J A, Osman M S, Rezazadeh H, Arshed S, Günerhan H 2020 Phys. Scr. 95 075217Google Scholar

    [23]

    Vega-Guzman J, Babatin M M, Biswas A 2018 Acta Phys. Pol. A 133 167Google Scholar

    [24]

    Haus H A, Jr. Whitaker N A 1985 Appl. Phys. Lett. 46 1

    [25]

    Hatami-Hanza H, Chu P L 1995 Opt. Commun. 119 347Google Scholar

    [26]

    Harel A, Malomed B A 2014 Phys. Rev. A 89 043809Google Scholar

    [27]

    Liu G J, Liang B M, Li Q, Jin G L 2003 Opt. Commun. 218 113Google Scholar

    [28]

    Li Y Y, Pang W, Fu S H, Malomed B A 2012 Phys. Rev. A 85 053821Google Scholar

    [29]

    Shi X L, Malomed B A, Ye F W, Chen X F 2012 Phys. Rev. A 85 053839Google Scholar

    [30]

    Mandal B, Chowdhury A R 2005 Chaos. Solitons Fractals 24 557Google Scholar

    [31]

    Afanasjev V V, Chu P L, Malomed B A 1997 Opt. Commun. 137 229Google Scholar

    [32]

    Dang Y L, Li H J, Lin J 2017 Nonlinear Dynam. 88 489Google Scholar

    [33]

    Gao Z J, Dang Y L, Lin J 2018 Opt. Commun. 44 302

    [34]

    李森清, 张肖, 林机 2021 70 184206Google Scholar

    Li S Q, Zhang X, Lin J 2021 Acta Phys Sin. 70 184206Google Scholar

  • 图 1  基态类亮孤子波形和功率图 (a) $ \beta_{1} = \beta_{2} = -1 $, $ b = -0.4 $, d分别为0.2, 3.0和7.0时对应的波形; (b) $ \beta_{1} = \beta_{2} = -1 $, $ d = 0.2 $, b分别为–1.0, –2.5和–5.0时对应的波形; (c) $ b = -0.4 $, $ d = 0.2 $, $ \beta_{1} = -1 $, 不同$ \beta_{2} $对应的波形($ \beta_{2} $ = –2, –4和–8); (d)当$ \beta_{1} = \beta_{2} = -1 $, $ d = 0.5 $时, 不同传播常数情况下, 功率与耦合函数宽度的关系; (e)当$ \beta_{1} = \beta_{2} = -1 $, $ b = -0.5 $时, 不同非局域程度情况下, 功率与耦合函数宽度的关系

    Fig. 1.  Waveform and power diagram of ground state bright-like soliton: (a) Corresponding waveform of $ \beta_{1} = \beta_{2} = -1 $, $ b = -0.4 $, d selected as 0.2, 3.0 and 7.0, respectively; (b) corresponding waveform of $ \beta_{1} = \beta_{2} = -1 $, $ d = 0.2 $, b selected as –1.0, –2.5 and –5.0, respectively; (c) waveform corresponds to different $ \beta_{2} $ when b = – 0.4, d = 0.2, $ \beta_{1} = -1 $($ \beta_{2} $ selected as –2, –4 and –8, respectively); (d) when $ \beta_{1} = \beta_{2} = -1 $, $ d = 0.5 $, the relationship between the power and coupling function width under different propagation constant; (e) when $ \beta_{1} = \beta_{2} = -1 $, $ b = -0.5 $, the relation between the power and coupling function width under different nonlocal degree

    图 2  两极类亮孤子的强度分布和传输特性 (a)当$ d = 0.2 $, $ H = 1 $, $ \omega $分别为$ 0.1 $, $ 0.05 $, $ 0.01 $时, 两极类亮孤子的强度分布图; (b)当$ b = -1.1 $, $ \omega = 0.1 $, $ H = 1 $, d分别为$ 0.2 $, $ 2 $, $ 8 $时, 两极类亮孤子的强度分布图; (c)对应图(b)中$ d = 2 $时, $ U_{1} $的加噪传输图; (d)$ d = 0.2 $, $ b = -1.1 $, $ \omega = 0.1 $, $ H = 3 $时, 孤子分子的强度分布图

    Fig. 2.  Intensity distribution and propagation properties of bipolar bright-like solitons: (a) When $ d = 0.2 $, $ H = 1 $, $ \omega $ is $ 0.1 $, $ 0.05 $, $ 0.01 $, respectively, intensity distribution of bipolar bright-like solitons; (b) when $ b = -1.1 $, $ H = 1 $, $ \omega = 0.1 $, d is $ 0.2 $, $ 2 $, $ 8 $, respectively, intensity distribution of bipolar bright-like solitons when the degree of nonlocality; (c) corresponding to the white noise propagation graph of $ U_{1} $ when $ d = 2 $ in panel (b); (d) intensity distribution of soliton molecule when $ d = 0.2 $, $ b = -1.1 $, $ \omega = 0.1 $, $ H = 3 $

    图 3  非对称峰值的两极类亮孤子的强度分布和传输特性 (a)耦合模式相同时, 非对称峰值的两极类亮孤子的强度分布图; (b) 图(a)孤子解$ U_{2} $的加噪传输图; (c) 图(a)孤子解的稳定性图谱; (d)耦合模式不同时, 非对称峰值两极类亮孤子的强度分布图; (e)图(d)孤子解$ U_{1} $的加噪传输图; (f)图(d)孤子解的稳定性图谱

    Fig. 3.  Intensity distribution and propagation properties of bipolar bright-like solitons with asymmetric peaks: (a) Intensity profiles of bipolar bright-like solitons with asymmetric peaks with the same coupling mode; (b) propagation of soliton solution $ U_{1} $ with the white noise in panel (a); (c) stability spectra of soliton solutions in panel (a); (d) intensity distribution of bipolar bright-like soliton with different patterns of asymmetric peaks with different coupling modes; (e) propagation of soliton solution $ U_{1} $ with the white noise in panel (d); (f) stability spectra of soliton solutions in panel (d)

    图 4  不同类型的三极类亮孤子的强度分布和传输特性 (a) $ \beta_{1} = \beta_{2} = -1 $, $ b = -1.1 $, $ d = 0.2 $, $ \alpha_{1} = 2 $, $ \alpha_{2} = 1 $, $ H = 1 $, $ \omega = 0.1 $时, 三极类亮孤子的强度分布图; (b) 图(a)孤子解$ U_{1} $的加噪传输图; (c) $ \beta_{1} = -1 $, $ \beta_{2} = -2 $, $ \alpha_{1} = 15 $, $ \alpha_{2} = 9 $, $ \omega = 0.8 $, $ d = 1.5 $, $ b = -0.5 $时, 孤子峰值不同的三极类亮孤子的强度分布图; (d) 图(c)孤子解$ U_{1} $的加噪传输图; (e)耦合模式不同时, 非对称峰值三极类亮孤子的强度分布图; (f) 图(e)孤子解$ U_{2} $的加噪传输图

    Fig. 4.  Intensity distribution and propagation characteristics of three-pole bright-like solitons with different types: (a) Intensity distribution of three-pole bright-like solitons when $ \beta_{1} = \beta_{2} = -1 $, $ b = -1.1 $, $ d = 0.2 $, $ \alpha_{1} = 2 $, $ \alpha_{2} = 1 $, $ H = 1 $, $ \omega = 0.1 $; (b) propagation diagram of soliton solution $ U_{1} $ with the white noise in panel (a); (c) intensity distribution of three-pole bright-like solitons with different soliton peaks when $ \beta_{1} = -1 $, $ \beta_{2} = -2 $, $ \alpha_{1} = 15 $, $ \alpha_{2} = 9 $, $ \omega = 0.8 $, $ d = 1.5 $, $ b = -0.5 $; (d) propagation diagram of soliton solution $ U_{2} $ with the white noise in panel (c); (e) intensity distribution of the asymmetric peak three-pole bright-like solitons with different coupling modes; (f) propagation diagram of soliton solution $ U_{2} $ with the white noise in panel (e)

    图 5  平顶孤子、单极灰孤子、两极灰孤子的强度分布和传输特性 (a)当$ \omega = 0.8 $, $ d = 1 $, $ b = -0.5 $时, 平顶孤子的强度分布图; (b)图(a)孤子解$ U_{2} $的加噪传输图; (c)当$ \omega = 0.05 $时, 单极灰孤子的强度分布图; (d)图(c)孤子解$ U_{1} $的加噪传输图; (e) $ \omega = 0.05 $, $ d = 1 $, $ b = -0.4 $时, 两极灰孤子的强度分布图; (f)图(e)孤子解$ U_{1} $的加噪传输图

    Fig. 5.  Intensity distribution and propagation properties of flat-topped soliton, unipolar grey soliton and bipolar grey solitons; (a) Intensity distribution of flat-topped soliton when $ \omega = 0.8 $, $ d = 1 $, $ b = -0.5 $; (b) propagation of soliton solution $ U_{2} $ with the white noise in panel (a); (c) intensity distribution of unipolar gray soliton when $ \omega = 0.05 $; (d) propagation of soliton solution $ U_{1} $ with the white noise in panel (c); (e) intensity distribution of bipolar gray solitons when $ \omega = 0.05 $, $ d = 1 $, $ b = -0.4 $; (f) propagation of soliton solution $ U_{1} $ with the white noise in panel (e)

    图 6  三极灰孤子的强度分布和传输特性 (a)当$ H = 4 $时, 三极灰孤子的强度分布图; (b)图(a)孤子解$ U_{1} $的加噪传输图; (c)当$ H = 7 $时, 孤子分子的强度分布图; (d)图(c)孤子解$ U_{1} $的加噪传输图

    Fig. 6.  Intensity distribution and propagation characteristics of tripolar grey solitons: (a) Intensity distribution of tripolar grey solitons when $ H = 4 $; (b) propagation of soliton solution $ U_{1} $ with the white noise in panel (a); (c) intensity distribution of soliton molecule when $ H = 7 $; (d) propagation of soliton solution $ U_{1} $ with the white noise in panel (c)

    Baidu
  • [1]

    Snyder A W, Mitchell D J 1997 Science 276 1538Google Scholar

    [2]

    Yang Z J, Zhang S M, Li X L, Pang Z G, Bu H X 2018 Nonlinear Dynam. 94 2563Google Scholar

    [3]

    Yang Z J, Zhang S M, Li X L, Pang Z G 2018 Appl. Math. Lett. 82 64Google Scholar

    [4]

    Wang Q, Liang G 2020 J. Opt. 22 055501Google Scholar

    [5]

    Liang G, Wang Q 2021 New J. Phys. 23 103036Google Scholar

    [6]

    郑一凡, 黄光侨, 林机 2018 67 214207Google Scholar

    Zheng Y F, Huang G Q, Lin J 2018 Acta Phys Sin. 67 214207Google Scholar

    [7]

    Dong L W, Ye F W 2010 Phys. Rev. A 81 013815Google Scholar

    [8]

    Wang Q, Deng Z Z 2020 Results Phys. 17 103056Google Scholar

    [9]

    Shi Z W, Li H G, Guo Q 2011 Phys. Rev. A 83 023817Google Scholar

    [10]

    龙学文, 胡巍, 张涛, 郭旗, 兰胜, 高喜存 2007 56 1397Google Scholar

    Long X W, Hu W, Zhang T, Guo Q, Lan S, Gao X C 2007 Acta Phys Sin. 56 1397Google Scholar

    [11]

    Shen M, Gao J S, Ge L J 2015 Sci. Rep. 5 9814Google Scholar

    [12]

    Horikisi T P, Frantzeskaki D J 2016 Opt. Lett. 41 583Google Scholar

    [13]

    Taillaert D, Harold C, Borel P I, Frandsen L H, De L R 2003 IEEE Photonics Technol. Lett. 15 1249Google Scholar

    [14]

    Nistazakis H E, Frantzeskakis D J, Atai J, Malomed A B, Efremidis N, Hizanidis K 2002 Phys. Rev. E 65 036605Google Scholar

    [15]

    Zhu X, Yang T, Chi P L, Xu R 2020 IEEE Trans. Microwave Theory Tech. 68 1Google Scholar

    [16]

    Shiva K, Mohammad D, Pejman R 2020 Plasmonics 15 869Google Scholar

    [17]

    Barnoski M K, Friedrich H R 1976 Appl. Opt. 15 2629Google Scholar

    [18]

    肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明 2015 64 204207Google Scholar

    Xiao Y L, Liu Y G, Wang Z, Liu X Q, Luo M M 2015 Acta Phys. Sin. 64 204207Google Scholar

    [19]

    Jung Y, Chen R, Ismaeel R, Brambilla G, Alam S, Giles I and Richardson D 2013 Opt. Express 21 24326Google Scholar

    [20]

    Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G 2014 Opt. Express 22 11610Google Scholar

    [21]

    Yao S 2018 IEEE Photonics Technol. Lett. 30 99Google Scholar

    [22]

    Srivastava H M, Baleanu D, Machado J A, Osman M S, Rezazadeh H, Arshed S, Günerhan H 2020 Phys. Scr. 95 075217Google Scholar

    [23]

    Vega-Guzman J, Babatin M M, Biswas A 2018 Acta Phys. Pol. A 133 167Google Scholar

    [24]

    Haus H A, Jr. Whitaker N A 1985 Appl. Phys. Lett. 46 1

    [25]

    Hatami-Hanza H, Chu P L 1995 Opt. Commun. 119 347Google Scholar

    [26]

    Harel A, Malomed B A 2014 Phys. Rev. A 89 043809Google Scholar

    [27]

    Liu G J, Liang B M, Li Q, Jin G L 2003 Opt. Commun. 218 113Google Scholar

    [28]

    Li Y Y, Pang W, Fu S H, Malomed B A 2012 Phys. Rev. A 85 053821Google Scholar

    [29]

    Shi X L, Malomed B A, Ye F W, Chen X F 2012 Phys. Rev. A 85 053839Google Scholar

    [30]

    Mandal B, Chowdhury A R 2005 Chaos. Solitons Fractals 24 557Google Scholar

    [31]

    Afanasjev V V, Chu P L, Malomed B A 1997 Opt. Commun. 137 229Google Scholar

    [32]

    Dang Y L, Li H J, Lin J 2017 Nonlinear Dynam. 88 489Google Scholar

    [33]

    Gao Z J, Dang Y L, Lin J 2018 Opt. Commun. 44 302

    [34]

    李森清, 张肖, 林机 2021 70 184206Google Scholar

    Li S Q, Zhang X, Lin J 2021 Acta Phys Sin. 70 184206Google Scholar

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析.  , 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [3] 蒋宏帆, 林机, 胡贝贝, 张肖. 非宇称时间对称耦合器中的非局域孤子.  , 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [4] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [5] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输.  , 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [6] 张泽众, 骆文于, 庞哲, 周益清. 孤子内波环境下三维声传播建模.  , 2019, 68(20): 204302. doi: 10.7498/aps.68.20190478
    [7] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [8] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论.  , 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [9] 雍文梅, 陈海军. 线性与非线性光晶格中偶极孤立子的稳定性.  , 2014, 63(15): 150302. doi: 10.7498/aps.63.150302
    [10] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析.  , 2014, 63(2): 024204. doi: 10.7498/aps.63.024204
    [11] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [12] 金蓉, 谌晓洪. VOxH2O (x= 15)团簇的结构及稳定性研究.  , 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [13] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析.  , 2012, 61(15): 154211. doi: 10.7498/aps.61.154211
    [14] 石玉仁, 张娟, 杨红娟, 段文山. 耦合KdV方程的双峰孤立子及其稳定性.  , 2011, 60(2): 020401. doi: 10.7498/aps.60.020401
    [15] 崔健, 罗积润, 朱敏, 郭炜. 休斯结构多间隙耦合腔的稳定性分析.  , 2011, 60(6): 061101. doi: 10.7498/aps.60.061101
    [16] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [18] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究.  , 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [19] 封国林, 董文杰, 李建平, 丑纪范. 自忆模式中差分格式的稳定性研究.  , 2004, 53(7): 2389-2395. doi: 10.7498/aps.53.2389
    [20] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性.  , 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
计量
  • 文章访问数:  3545
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-08-04
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map