-
利用折射率椭球分析法,分析了某些具有多重光学效应的光学晶体在两个外场同时作用下的一些特有调制规律. 结果表明,当晶体的折射率椭球方程的三个交叉项中只有一项x1x2不为零时,可以得到其外场诱导新主轴折射率及其主轴取向的简单计算式. 据此可以揭示出某些晶体在两个外加电场同时作用下将具有双横向电光Pockels效应,例如6点群的电光晶体. 但一般晶体在双横向应力作用下不具有与双横向电光效应类似的调制特性,其弹光双折射大小与其应力差成正比,其双折射主轴方向一般为固定值. 在相互垂直的外加应力和电场同时作用下,某些晶体(例如43m点群晶体)的双折射大小与外加应力和外加电场的加权几何平均值成正比,且新折射率主轴旋转角由外加应力和外加电场的比值来确定. 晶体的上述双参量调制特性对设计新型光学调制器或传感器具有重要指导意义.In the applications of two external fields, such as stresses and electric fields, the optical modulation properties of some crystals are theoretically analyzed using the method of index ellipsoid. Simple mathematical formulas for the calculations of the field-induced principal refractive indexes of some crystals and corresponding azimuthal angles of their principal axes can be deduced from the equation of index ellipsoid if there exists only one nonzero cross term in the equation, e.g. x1x2. According to these simple formulas, we can find out some crystals exhibiting dual transverse electrooptic effect, e.g. crystals of the 6 symmetry point group. Under two simultaneously applied external stresses, elastooptic birefringence of a crystal is proportional to the difference between the two external stresses, and the orientations of their birefringent axes are unchanged. When a stress and an electric field are simultaneously and perpendicularly applied to some crystals such as cubic crystals of 43m point group, the field-induced birefringence of the crystal is proportional to the weighted geometric mean of the applied stress and electric field, and the orientations of their birefringent axes only depend on the ratio of the applied electric field and stress. The above electrooptic and elastooptic modulation properties are useful to the design of novel optical modulators and sensors.
-
Keywords:
- electro-optical modulation /
- elasto-optical modulation /
- dual transverse electrooptic effect /
- birefringence
[1] Buher C F, Bloom L R, Baird D H 1963 Appl. Opt. 2 839
[2] Willison F K 1966 Appl. Opt. 5 97
[3] Hu C L 1967 J. Appl. Phys. 38 3275
[4] Kalymnios D, Widdis F C 1970 J. Phys. D 3 884
[5] Li C S 2009 Acta Optica Sinica 29 1671 (in Chinese) [李长胜2009 光学学报29 1671]
[6] Hidaka K, Kouno T 1989 Rev. Sci. Instrum. 60 1252
[7] Li C S, Cui X 1997 Chin. J. Lasers A24 1079 (in Chinese)[李长胜, 崔翔, 1997 中国激光A24 1079]
[8] Li C S, Cui X, Yoshino T 2001 IEEE Trans. Instrum. Meas. 50 1375
[9] Li C S 2008 Appl. Opt. 47 2241
[10] Li C S 2008 Appl. Opt. 47 5701
[11] Nelson D F 1975 J. Opt. Soc. Am. 65 1144
[12] Gunning M J, Raab R E 1998 Appl. Opt. 37 8438
[13] Wang J Y, Huang L Y, Qin F L, et al 2012 Progress in Phys. 32 33 (in Chinese)[王继扬, 黄林勇, 覃方丽, 等2012 物理学进展32 33]
[14] Liao Y B 2003 Polarization Optics (Beijing: Science Press) p137 (in Chinese) [廖延彪2003 偏振光学(北京: 科学出版社) 第137 页]
[15] Yu K X, Ding X H, Pang Z G 2011 Acousto-optic Principle and Devices (Beijing: Science Press) p263 (in Chinese)[俞宽新, 丁晓红, 庞兆广2011 声光原理与声光器件 (北京: 科学出版社) 第263 页]
[16] Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications 6th Ed. (London: Oxford University Press, Inc.) p365
[17] Li C S, Yoshino T 2002 J. Lightwave Technol. 20 843
[18] Li S, Ma H Q, Wu L A 2013 Acta Phys. Sin. 62 084214[李申, 马海强, 吴令安2013 62 084214]
[19] Li J, Zhu J P, Qi C 2013 Acta Phys. Sin. 62 044206 [李杰, 朱京平, 齐春2013 62 044206]
[20] Chen G, Liao L J, Hao W 2007 Fundamental of Crystal Optics (Beijing: Science Press) p471 (in Chinese) [陈纲, 廖理几, 郝伟2007 晶体物理学基础(北京: 科学出版社) 第 471 页]
[21] Li C S 2011 Appl. Opt. 50 5315
-
[1] Buher C F, Bloom L R, Baird D H 1963 Appl. Opt. 2 839
[2] Willison F K 1966 Appl. Opt. 5 97
[3] Hu C L 1967 J. Appl. Phys. 38 3275
[4] Kalymnios D, Widdis F C 1970 J. Phys. D 3 884
[5] Li C S 2009 Acta Optica Sinica 29 1671 (in Chinese) [李长胜2009 光学学报29 1671]
[6] Hidaka K, Kouno T 1989 Rev. Sci. Instrum. 60 1252
[7] Li C S, Cui X 1997 Chin. J. Lasers A24 1079 (in Chinese)[李长胜, 崔翔, 1997 中国激光A24 1079]
[8] Li C S, Cui X, Yoshino T 2001 IEEE Trans. Instrum. Meas. 50 1375
[9] Li C S 2008 Appl. Opt. 47 2241
[10] Li C S 2008 Appl. Opt. 47 5701
[11] Nelson D F 1975 J. Opt. Soc. Am. 65 1144
[12] Gunning M J, Raab R E 1998 Appl. Opt. 37 8438
[13] Wang J Y, Huang L Y, Qin F L, et al 2012 Progress in Phys. 32 33 (in Chinese)[王继扬, 黄林勇, 覃方丽, 等2012 物理学进展32 33]
[14] Liao Y B 2003 Polarization Optics (Beijing: Science Press) p137 (in Chinese) [廖延彪2003 偏振光学(北京: 科学出版社) 第137 页]
[15] Yu K X, Ding X H, Pang Z G 2011 Acousto-optic Principle and Devices (Beijing: Science Press) p263 (in Chinese)[俞宽新, 丁晓红, 庞兆广2011 声光原理与声光器件 (北京: 科学出版社) 第263 页]
[16] Yariv A, Yeh P 2007 Photonics: Optical Electronics in Modern Communications 6th Ed. (London: Oxford University Press, Inc.) p365
[17] Li C S, Yoshino T 2002 J. Lightwave Technol. 20 843
[18] Li S, Ma H Q, Wu L A 2013 Acta Phys. Sin. 62 084214[李申, 马海强, 吴令安2013 62 084214]
[19] Li J, Zhu J P, Qi C 2013 Acta Phys. Sin. 62 044206 [李杰, 朱京平, 齐春2013 62 044206]
[20] Chen G, Liao L J, Hao W 2007 Fundamental of Crystal Optics (Beijing: Science Press) p471 (in Chinese) [陈纲, 廖理几, 郝伟2007 晶体物理学基础(北京: 科学出版社) 第 471 页]
[21] Li C S 2011 Appl. Opt. 50 5315
计量
- 文章访问数: 6210
- PDF下载量: 609
- 被引次数: 0