-
结合欧空局推广需求,以及国内加速器和国际加速器比对的愿望,将欧空局单粒子翻转监测器(Europe space agency single event upset monitor,ESA SEU Monitor)成功应用于国内串列重离子加速器束流标定.通过和欧洲主要加速器的数据结果进行比对,分析系统内部单粒子翻转物理位图,验证了串列加速器在重离子束流监测技术方面的准确性.结合多方试验数据,观察到在低LET (linear energy transfer)单粒子翻转截面曲线亚阈区,相同LET值不同能量重离子引起ESA SEU Monitor翻转截面相差13个量级.采用基于试验数据的方法,确定了器件灵敏体积的几何尺寸、临界电荷以及收集效率,通过蒙特卡罗仿真揭示了ESA SEU Monitor单粒子翻转能量相关性的物理机理.同时针对试验中低LET值倾斜角度时,ESA SEU Monitor存储阵列中不同模块单粒子翻转所表现的敏感性差异,基于对器件结构的分析和计算验证,表明低LET重离子倾斜入射时,离子穿过不同模块灵敏区上方层间介质的差异是引起单粒子翻转角度相关性的根本原因.
-
关键词:
- ESA SEU Monitor /
- 单粒子翻转 /
- 能量相关性 /
- 角度相关性
The new generation ESA SEU Monitor is first applied to beam verification of Beijing HI-13 Tandem accelerator according to the popularization need of Europe Space Agency and at the desire of contrast of domestic acceleraor with international accelerator. Heavy ion single event cross section of ESA SEU Monitor obtained at HI-13 is compared with those from European facilities. Beam homogeneity is also analyzed based on the SEU physical bitmap. The accuracy of heavy ion beam monitoring technique at HI-13 accelerator is verified. Through combining the heavy ion testing result with the data from the other test sites, it can be observed that the differences between SEU cross sections with different heavy ion energies of the same LET value can reach 1-3 orders of magnitude in the sub-threshold zone of single event upset cross section curve below the direct ionization LET threshold. The geometrical structure, critical charge and collection efficiency of sensitive volume are constructed on the basis of testing data and process information. The physical mechanism of energy effect on single event upsets in ESA SEU Monitor is revealed through using the Monte-Carlo calculation. Nuclear reactions between incident heavy ions and material atoms can account for single event upsets below the direct ionization LET threshold. The differences in nuclear reaction type and cross section between the diferent energy heavy ions and material atoms are the root cause of the difference among heavy ion SEU cross sections with different energies at the same LET value. On the other hand, SEU bitmap nonuniformity among different blocks in memory array and different orientation dices in ESA SEU Monitor is first reported when the heavy ion is incident at a tilting angle at the low LET value. The analysis of device layout and calculation verification can account for this phenomenon. The material of interlayer dielectric with the tilting ion passing through is different when heavy ion reaches the sensitive volume of memory blocks with different data. This leads to the difference between efficient LET values inside the sensitive volume for different data blocks. Eventually the sensitivity difference in single event upset among blocks with different data occures. The applications of ESA SEU Monitor in beam calibrating, tuning of domestic accelerator and single event effect test can be broadened further. Prediction method of space single event upset rate including heavy ion energy dependence and special angular dependence based on full-physical simulation should be developed in the future.-
Keywords:
- ESA SEU Monitor /
- single event upset /
- energy dependence /
- angular dependence
[1] Harboe-Sørensen R, Guerre F X, Roseng A 2005 Proc. RADECS B3-1-B3-7
[2] Harboe-Sørensen R, Poivey C, Fleurinck N, Puimege K, Zadeh A, Guerre F X, Lochon F, Kaddour M, Li L, Walter D, Keating A, Jaksic A, Poizat M 2011 IEEE Trans. Nucl. Sci. 58 1001
[3] Harboe-Sørensen R, Poivey C, Guerre F X, Roseng A, Lochon F, Berger G, Hajdas W, Virtanen A, Kettunen H, Duzellier S 2008 IEEE Trans. Nucl. Sci. 55 3082
[4] Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sörensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161
[5] Space Component Coordination Group1995 ESA/SCC Basic Specification No. 25100
[6] Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898
[7] Luo Y H, Zhang F Q, Guo H X, Xiao Y, Zhao W, Ding L L, Wang Y M 2015 J. Semicond. 36 114009
-
[1] Harboe-Sørensen R, Guerre F X, Roseng A 2005 Proc. RADECS B3-1-B3-7
[2] Harboe-Sørensen R, Poivey C, Fleurinck N, Puimege K, Zadeh A, Guerre F X, Lochon F, Kaddour M, Li L, Walter D, Keating A, Jaksic A, Poizat M 2011 IEEE Trans. Nucl. Sci. 58 1001
[3] Harboe-Sørensen R, Poivey C, Guerre F X, Roseng A, Lochon F, Berger G, Hajdas W, Virtanen A, Kettunen H, Duzellier S 2008 IEEE Trans. Nucl. Sci. 55 3082
[4] Hoeffgen S K, Durante M, Ferlet-Cavrois V, Harboe-Sörensen R, Lennartz W, Kuendgen T, Kuhnhenn J, Latessa C, Mathes M, Menicucci A, Metzger S, Nieminen P, Pleskac R, Poivey C, Schardt D, Weinand U 2012 IEEE Trans. Nucl. Sci. 59 1161
[5] Space Component Coordination Group1995 ESA/SCC Basic Specification No. 25100
[6] Warren K M, Weller R A, Sierawski B D, Reed R A, Mendenhall M H, Schrimph R D, Massengill L W, Porter M E, Wilkinson J D, Label K A, Adams J H 2007 IEEE Trans. Nucl. Sci. 54 898
[7] Luo Y H, Zhang F Q, Guo H X, Xiao Y, Zhao W, Ding L L, Wang Y M 2015 J. Semicond. 36 114009
计量
- 文章访问数: 7121
- PDF下载量: 164
- 被引次数: 0