搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能

冯奇 李梦凯 唐海通 王晓东 高忠民 孟繁玲

引用本文:
Citation:

石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能

冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲

Dielectric properties of graphene/poly(vinyl alcohol)/poly (vinylidene fluoride) nanocomposites films

Feng Qi, Li Meng-Kai, Tang Hai-Tong, Wang Xiao-Dong, Gao Zhong-Min, Meng Fan-Ling
PDF
导出引用
  • 石墨烯由于具有良好的力学性能、高的电子传递能力以及相对较低的生产成本等优势而受到广泛关注,但现在多将其直接分散在聚合物中提高聚合物的介电性能. 本工作中,制备出了还原氧化石墨烯/PVA/聚偏氟乙烯(PVDF)的三相纳米复合薄膜. 首先把聚乙烯醇(PVA)和氧化石墨烯(GO)分散于二甲基亚砜(DMSO)中,得到PVA非共价键修饰的GO,再将PVDF溶于该混合液体中,通过溶液浇注以及低温加热过程得到三相纳米复合薄膜. 实验结果表明,在120 ℃ 下,GO可以被热还原成还原氧化石墨烯(RGO),且可以促进PVDF 的相向相转变. PVA修饰RGO比单纯RGO在PVDF基体中分散性要好,且使PVDF的球晶尺寸大大降低,复合薄膜的介电性能大幅提高. RGO/PVA/PVDF复合膜的渗流阈值fvol*约为8.45 vol.%,在102 Hz时RGO/PVA/PVDF复合膜的介电常数大约是纯PVDF的238倍. 本工作为制备介电性能高、生产成本低、操作简单的聚合物纳米复合材料提供了一种好的方法.
    Graphene has been a superstar in the fields ranging from materials science to condensed-matter physics since 2004. Graphene possesses good thermal and mechanical properties, high electron transfer capability and relatively low production cost. As a consequence, graphene has been used in the areas of multi-functional advanced materials and electronics. A direct disperse method has been widely applied to polymers to improve their dielectric properties. Recently, graphene/polymer composites have received much attention. Graphene nanosheets can significantly improve the physical properties of the host polymer at a very low content of conductive filler loading. Poly vinylidene fluoride (PVDF) is a semicrystalline thermoplastic polymer with remarkably high piezo-/pyroelectric coefficient, and excellent thermal stability and chemical resistance. More efforts have been recently devoted to the preparations of high-' composites based on PVDF. In this work, a graphene/PVA/PVDF nanocomposite film composed of poly(vinyl alcohol) (PVA), reduced graphene oxide (RGO), and poly (vinylidene fluoride) (PVDF) is fabricated. First of all, graphene oxide (GO) is prepared by the modified Hummers method. GO and PVA are successively dissolved in the dimethyl sulfoxide (DMSO) solution, in order to obtain PVA functionalized GO which is formed via non-covalent bonds. Then PVDF is added into this solution to form a homogeneous three-phase aqueous mixture. According to the solution-casting and thermal reduction processes, the three-phase nanocomposite films are formed. The thickness values of the films are in a range of 0.3-0.4 mm. The square specimens are coated with a silver paste prior to electrical measurements. The obtained products are characterized using X-ray diffraction, UV Vis absorption spectrum, Fourier transform infrared absorption spectrum, and atomic force microscopy. The morphologies of PVDF and RGO/PVA/PVDF films are investigated by a scanning electron microscope. Electrical measurements are conducted in a frequency range from 102 to 104 Hz. Results suggest that GO can be reduced to RGO and phase transition of PVDF from to phases is effectively promoted at 120 ℃. The dielectric properties of the polymer matrix are improved. Furthermore, PVA modified RGO is easier to disperse in the PVDF substrate than the original one, which strongly reduces the spherulite size of PVDF and improves the dielectric property of the composite film. The percolation threshold (fvol*) of RGO/PVA/PVDF film is estimated to be 8.45 vol.%, and the dielectric constant of the film is 238 times as large as that of the pure PVDF films at 102 Hz. In addition, the dielectric constant increases rapidly near the percolation threshold and depends on frequency, which is mainly ascribed to the Maxwell-Wagner-Sillars polarization in the low frequency range. This study provides a low-cost and simple method of preparing polymer nanocomposites with high dielectric properties.
      通信作者: 孟繁玲, mfl@jlu.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2012YQ24026407)资助的课题.
      Corresponding author: Meng Fan-Ling, mfl@jlu.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ24026407).
    [1]

    Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180

    [2]

    Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243

    [3]

    Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870

    [4]

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 51 776]

    [5]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575

    [6]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [7]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625

    [8]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [9]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [10]

    Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]

    [11]

    Yang S D, Chen L 2015 Chin. Phys. B 24 118104

    [12]

    Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929

    [13]

    Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]

    [14]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [15]

    Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523

    [16]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912

    [17]

    Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888

    [18]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273

    [19]

    Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70

    [20]

    Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668

    [21]

    Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84

    [22]

    Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]

    [23]

    Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806

    [24]

    Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411

    [25]

    Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101

    [26]

    Salimi A, Youseli A A 2003 Polym. Test. 22 699

    [27]

    Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489

    [28]

    Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]

    [29]

    He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710

    [30]

    Nan C W 1993 Prog. Mater. Sci. 37 1

    [31]

    Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902

  • [1]

    Zhang T, Xue Q Z, Zhang S, Dong M D 2012 Nano Today 7 180

    [2]

    Naber R C G, Tanase C, Blom P W M, Gelinck G H, Marsman A W, Touwslager F J, Setayesh S, Leeuw D M D 2005 Nat. Mater. 4 243

    [3]

    Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C 2010 Phys. Status Solidi A 207 1870

    [4]

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776 (in Chinese) [李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 51 776]

    [5]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Cuo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575

    [6]

    Zheng D S, Wang J L, Hu W D, Liao L, Fang H H, Guo N, Wang P, Gong F, Wang X D, Fan Z Y, Wu X, Meng X J, Chen X S, Lu W 2016 Nano Lett. 16 2548

    [7]

    Dang Z M, Lin Y H, Nan C W 2003 Adv. Mater. 15 1625

    [8]

    Dang Z M, Wang L, Yin Y, Zhang Q, Lei Q Q 2007 Adv. Mater. 19 852

    [9]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [10]

    Zhang H J, Shen P 2013 Physics 42 456(in Chinese) [张海婧, 沈平2013 物理42 456]

    [11]

    Yang S D, Chen L 2015 Chin. Phys. B 24 118104

    [12]

    Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M 2004 Carbon 42 2929

    [13]

    Zhang G, Huang S Y 2013 Physics42 100 (in Chinese)[张刚, 黄少云2013 物理42 100]

    [14]

    Ding G W, Liu S B, Zhang H F, Kong X K, Li H M, Li B X, Liu S Y, Li H 2015 Chin. Phys. B 24 118103

    [15]

    Chae H K, Siberio-Prez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M 2004 Nature 427 523

    [16]

    Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N, Heer W A D 2004 J. Phys. Chem. B 108 19912

    [17]

    Ansari S, Giannelis E P 2009 J. Polym. Sci. Pol. Phys. 47 888

    [18]

    Wang D R, Bao Y R, Zha J W, Zhao J, Dang Z M, Hu G H 2012 ACS Appl. Mater. Interfaces 4 6273

    [19]

    Chu L Y, Xue Q Z, Sun J, Xia F J, Xing W, Xia D, Dong M D 2013 Compos. Sci. Technol. 86 70

    [20]

    Cho S H, Lee J S, Jang J 2015 ACS Appl. Mater. Interfaces 7 9668

    [21]

    Tang H X, Ehlert G J, Lin Y R, Sodano H A 2012 Nano Lett. 12 84

    [22]

    Liu H Y, Zheng Y L, Peng S G, Liu J C, Zhang Y Q 2014 New Chem. Mater. 42 1 (in Chinese) [刘红宇, 郑英丽, 彭淑鸽, 刘继纯, 张玉清2014 化工新型材料42 1]

    [23]

    Daniela C M, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z Z, Slesarev A, Alemany L B, Lu W, Tour J M 2010 ACS Nano 4 4806

    [24]

    Zhao X, Zhang Q H, Hao Y P, Li Y Z, Fang Y, Chen D J 2010 Macromolecules 43 9411

    [25]

    Li D, Muller B M, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101

    [26]

    Salimi A, Youseli A A 2003 Polym. Test. 22 699

    [27]

    Gregorio R, J R, Uneo E M 1999 J. Mater. Sci. 34 4489

    [28]

    Li J C, Wang C L, Zhong W L 2003 Acta Phys. -Chim. Sin. 19 1010 (in Chinese) [李吉超, 王春雷, 钟维烈 2003 物理化学学报 19 1010]

    [29]

    He F, Lau S T, Chan H L, Fan J T 2009 Adv. Mater. 21 710

    [30]

    Nan C W 1993 Prog. Mater. Sci. 37 1

    [31]

    Li Y J, Xu M, Feng J Q, Dang Z M 2006 Appl. Phys. Lett. 89 072902

  • [1] 阴凯, 郭其阳, 张添胤, 李静, 陈向荣. 表面氟化聚苯乙烯纳米微球提升环氧树脂绝缘特性.  , 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理.  , 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能.  , 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [4] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [5] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [6] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展.  , 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [7] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料.  , 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [8] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化.  , 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [9] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展.  , 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [10] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器.  , 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [11] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [12] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理.  , 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [13] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究.  , 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [14] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究.  , 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [15] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟.  , 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [16] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究.  , 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [17] 黄集权, 洪兰秀, 韩高荣, 翁文剑, 杜丕一. Fe-Ni-BaTiO3复合材料的介电行为及其机理研究.  , 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [18] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响.  , 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究.  , 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [20] 计齐根, 都有为. 晶粒边界对Nd2Fe14B/α-Fe纳米复合材料性能的影响.  , 2000, 49(11): 2281-2286. doi: 10.7498/aps.49.2281
计量
  • 文章访问数:  7775
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map