搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场法模拟Fe-C合金定向凝固的液相通道

康永生 赵宇宏 侯华 靳玉春 陈利文

引用本文:
Citation:

相场法模拟Fe-C合金定向凝固的液相通道

康永生, 赵宇宏, 侯华, 靳玉春, 陈利文

Simulation of liquid channel of Fe-C alloy directional solidification by phase-field method

Kang Yong-Sheng, Zhao Yu-Hong, Hou Hua, Jin Yu-Chun, Chen Li-Wen
PDF
导出引用
  • 在定向凝固的研究中,主要是通过改变推进速度或温度梯度以调节凝固组织,提升合金铸件性能. 对于不同定向凝固条件下组织的形成及相关性质的研究成为了热点,本文主要研究在特定定向凝固条件下Fe-C合金枝晶尖端分裂后形成的液相通道及推进速度对于液相通道的影响. 研究发现:在系统各向异性与材料各向异性的综合作用下,形成了定向凝固液相通道;且随推进速度的增大,液相通道内溶质浓度升高,长度增大,直径基本维持不变. 通过液相通道相关尺度以及溶质富集的模拟结果分析其造成的晶内偏析的程度,同时指出可通过适当降低推进速度来减小液相通道溶质偏析的程度.
    In directional solidification, two characteristic parameters determine the dendritic growth: the thermal gradient and the pulling velocity. To achieve the suitable microstructure and improve the performance of casting, they are usually used to resize the pulling velocity or temperature gradient in directional solidification process. The structures obtained under different directional solidification conditions, and their associated properties both have been hot research points. It is difficult to observe the microstructure, which is usually on a micrometer scale, directly in experiment, and the phase-field method becomes a strong tool to understand the dendrite growth pattern. We mainly study the liquid channel formed after Fe-C alloy dendrite tip splitting under the specific condition of directional solidification and analyze the influence on liquid channel of pulling velocity in this paper. We choose the fixed thermal gradient G =20 K/mm which is on the order of the experimental value, and pulling velocity VP no more than 10 mm/s to keep the cooling rate in the range of low speed in dendrite growth, so that the interface kinetic effect can be neglected. Recent experimental results show the different interfacial energies in various compositions of Al-Zn alloy and Fe-C alloy, then we can investigate a series of directional solidification microstructures with fixed alloy Fe-0.5 wt.%C composition at different interfacial energies in our simulations. We find that the liquid channel is formed as a result of anisotropy competition between system and materials, the length and C concentration of liquid channel increase with the pulling velocity increasing, while the diameter of liquid channel is constant. It is interesting to find that there is a minimum of pulling velocity almost equal to 1 mm/s, the tip will not split and no liquid channel forms in the following steps either when the velocity is smaller than the minimum. We also compare the segregation caused by solute enrichment in liquid channel and solute segregation between dendrite arms in a series of simulations: the former is more serious than the latter. Then we point out the way to reduce the segregation caused by liquid phase channel by reducing the pulling velocity properly. It will be more practical to couple the flow field with other external field, such as magnetic field, in the simulation.
      通信作者: 赵宇宏, zyh388@sina.com
    • 基金项目: 国家自然科学基金(批准号:51574207,51574206,51204147,51274175)和山西省归国学者基金(批准号:2013-81)资助的课题.
      Corresponding author: Zhao Yu-Hong, zyh388@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51574207, 51574206, 51204147, 51274175) and the Shanxi Provincial Foundation for Returned Scholars(Main Program), China (Grant No. 2013-81).
    [1]

    Karagadde S, Yuan L, Shevchenko N, Eckert S, Lee P D 2014 Acta Mater. 79 168

    [2]

    Ma D X, Zhou B, Andreas B P 2011 Adv. Mater. Res. 278 428

    [3]

    Boden S, Eckert S, Gerbeth G 2010 Mater. Lett. 64 1340

    [4]

    Haxhimali T, Karma A, Gonzales F, Rappaz M 2006 Nat. Mater. 5 660

    [5]

    Dantzig J A, Napoli P D, Friedli J, Rappaz M 2013 Metall. Mater. Trans. A 44 5532

    [6]

    Friedli J, Napoli P D, Rappaz M, Dantzig J A 2012 IOP Conf. Ser. 33 012111

    [7]

    Morteza A, Sebastian G, Nikolas P 2012 Acta Mater. 60 657

    [8]

    Salgado-Ordorica M, Desbiolles J L, Rappaz M 2011 Acta Mater. 59 5074

    [9]

    Melendez A J, Beckermann C 2012 J. Cryst. Growth 340 175

    [10]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [11]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [12]

    Wheeler A A, Boettinger W J, Mcfadden G B 1993 Phys. Rev. E 47 1893

    [13]

    Fehlner W R, Vosko S H 1976 Can. J. Phys. 54 2159

    [14]

    Kurz W, Fisher D J (translated by Li J G,Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp158 (in Chinese) [库兹W, 费舍D J 著 (李建国,胡侨丹 译) 2010 凝固原理 (北京: 高等教育出版社) 第158页]

    [15]

    Wang X B, Lin X, Wang L L, Yu H L, Wang M, Huang W D 2013 Acta Phys. Sin. 62 078102 (in Chinese) [王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东 2013 62 078102]

    [16]

    Xie Y 2012 Ph. D. Dissertation (Leicester: University of Leicester) (in Chinese) [谢玉 2012 博士论文 (雷彻斯特市: 雷彻斯特大学)]

    [17]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 109

    [18]

    Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611

    [19]

    Lu S Z, Hunt J D 1992 J. Cryst. Growth 123 17

    [20]

    Guo C W, Li J J, Ma Y, Wang J C 2015 Acta Phys. Sin. 64 148101 (in Chinese) [郭春文, 李俊杰, 马渊, 王锦程 2015 64 148101]

    [21]

    Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D 2013 Acta Phys. Sin. 62 178105 (in Chinese) [张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东 2013 62 178105]

  • [1]

    Karagadde S, Yuan L, Shevchenko N, Eckert S, Lee P D 2014 Acta Mater. 79 168

    [2]

    Ma D X, Zhou B, Andreas B P 2011 Adv. Mater. Res. 278 428

    [3]

    Boden S, Eckert S, Gerbeth G 2010 Mater. Lett. 64 1340

    [4]

    Haxhimali T, Karma A, Gonzales F, Rappaz M 2006 Nat. Mater. 5 660

    [5]

    Dantzig J A, Napoli P D, Friedli J, Rappaz M 2013 Metall. Mater. Trans. A 44 5532

    [6]

    Friedli J, Napoli P D, Rappaz M, Dantzig J A 2012 IOP Conf. Ser. 33 012111

    [7]

    Morteza A, Sebastian G, Nikolas P 2012 Acta Mater. 60 657

    [8]

    Salgado-Ordorica M, Desbiolles J L, Rappaz M 2011 Acta Mater. 59 5074

    [9]

    Melendez A J, Beckermann C 2012 J. Cryst. Growth 340 175

    [10]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [11]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [12]

    Wheeler A A, Boettinger W J, Mcfadden G B 1993 Phys. Rev. E 47 1893

    [13]

    Fehlner W R, Vosko S H 1976 Can. J. Phys. 54 2159

    [14]

    Kurz W, Fisher D J (translated by Li J G,Hu Q D) 2010 Fundamentals of Solidification (Beijing: Higher Education Press) pp158 (in Chinese) [库兹W, 费舍D J 著 (李建国,胡侨丹 译) 2010 凝固原理 (北京: 高等教育出版社) 第158页]

    [15]

    Wang X B, Lin X, Wang L L, Yu H L, Wang M, Huang W D 2013 Acta Phys. Sin. 62 078102 (in Chinese) [王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东 2013 62 078102]

    [16]

    Xie Y 2012 Ph. D. Dissertation (Leicester: University of Leicester) (in Chinese) [谢玉 2012 博士论文 (雷彻斯特市: 雷彻斯特大学)]

    [17]

    Burden M H, Hunt J D 1974 J. Cryst. Growth 22 109

    [18]

    Hunt J D, Lu S Z 1996 Metall. Mater. Trans. A 27 611

    [19]

    Lu S Z, Hunt J D 1992 J. Cryst. Growth 123 17

    [20]

    Guo C W, Li J J, Ma Y, Wang J C 2015 Acta Phys. Sin. 64 148101 (in Chinese) [郭春文, 李俊杰, 马渊, 王锦程 2015 64 148101]

    [21]

    Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D 2013 Acta Phys. Sin. 62 178105 (in Chinese) [张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东 2013 62 178105]

  • [1] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究.  , 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响.  , 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响.  , 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶.  , 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [5] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响.  , 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [6] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化.  , 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [7] 孙凌涛, 郭朝中, 肖绪洋. Cu偏析诱导Co团簇结构及性质异常的动力学模拟.  , 2016, 65(12): 123601. doi: 10.7498/aps.65.123601
    [8] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律.  , 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [9] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [10] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响.  , 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [11] 白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东. 抽拉速度对SCN-DC共晶生长形貌的影响.  , 2013, 62(21): 218103. doi: 10.7498/aps.62.218103
    [12] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响.  , 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [13] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响.  , 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [14] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究.  , 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [15] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响.  , 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [16] 郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣. 电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响.  , 2012, 61(23): 238501. doi: 10.7498/aps.61.238501
    [17] 王建元, 陈长乐, 翟薇, 金克新. 切向流动作用下SCN-3wt% H2O枝晶定向生长过程研究.  , 2009, 58(9): 6554-6559. doi: 10.7498/aps.58.6554
    [18] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟.  , 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [19] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟.  , 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  6856
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 修回日期:  2016-06-22
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map