搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁铁/压电双晶片复合材料磁电耦合性能的优化设计

张源 高雁军 胡诚 谭兴毅 邱达 张婷婷 朱永丹 李美亚

引用本文:
Citation:

磁铁/压电双晶片复合材料磁电耦合性能的优化设计

张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚

Optimization design for magnetoelectric coupling property of the magnet/bimorph composite

Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya
PDF
导出引用
  • 本文采用弹性力学的方法,基于压电方程,给出了磁铁/压电双晶片(Bimorph)复合材料磁电耦合系数的理论表达式,并选取不同的结构参数和材料参数对其磁电耦合系数进行了数值计算. 研究表明:Bimorph存在最佳的压电层厚度,使得磁铁/Bimorph复合材料的磁电耦合系数达到最大;金属层材料和压电相材料也均会影响磁铁/Bimorph复合材料的磁电耦合系数. 该研究结果为磁铁/Bimorph复合材料的优化设计、实际应用提供了有益的理论指导.
    Magnetoelectric (ME) composite as one kind of ME material that can yield a strong coupling effect between magnetic and electric fields at room temperature, has drawn widespread attention for decades due to its rich physics contents and significant technological prospect. Except for traditional magnetostrictive/piezoelectric based ME composites, other ME composites have been reported, among which the magnet/piezo-cantilever composites show super strong ME coupling effect. The magnet/piezo-cantilever composite is generally composed of a piezoelectric cantilever and magnets attached at the free end of the cantilever, which realizes ME coupling by force moment-mediated magnetic torque effect and piezoelectric effect. Recently, various configurations of the magnet/piezo-cantilever composites for obtaining higher ME coupling coefficients have been proposed and demonstrated experimentally. However, few theoretical researches of these magnet/piezo-cantilever composites of different configurations have been carried out, which is of great importance for optimizing the design of ME coupling property of the magnet/piezo-cantilever composites. Here in this paper, a theoretical expression for the low-frequency ME coupling coefficient in the magnet/piezo-cantilever composite is deduced based on piezoelectric constitutive equations by using the theory of elastic mechanics. The typical magnet/bimorph composite is chosen as the theoretical model. Based on the deduced theoretical expression, the dependences of the lowfrequency ME coupling coefficients in the magnet/bimorph composite on material and structural parameters are numerically calculated. The results show that there are optimal thickness values of the piezoelectric layers in the magnet/bimorph composite with different metal thickness values and material constituents for achieving maximal lowfrequency ME coupling coefficients. The thicker the metal layer in the magnet/bimorph composite, the less insensitive the low-frequency ME coupling coefficient to the thickness of the piezoelectric layer will be. And the low-frequency ME coupling coefficient of the magnet/bimorph composite decreases when a metal with higher elastic module is selected for bimorph. For the magnet/bimorph composite consisting of hard piezoelectric ceramics (PZT-4), the low-frequency ME coupling coefficient is higher than that of the composite consisting of the soft counterpart ones (PZT-5 H), which is due to the hard piezoelectric ceramics with higher piezoelectric voltage coefficient than the soft counterpart ones. What is more interesting is that when the piezoelectric material in the magnet/bimorph composite is changed into relaxor ferroelectric single crystals Pb(Zn1/3 Nb2/3)O3-PbTiO3 (PZN-PT), an extremely high low-frequency ME coupling coefficient can be obtained, which is 3.8 and 5 times those of the 13 composites with hard and soft piezoelectric ceramics, respectively. This research gives a theoretical guidance for optimal design and practical applications of the magnet/Bimorph composite.
      通信作者: 朱永丹, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn ; 李美亚, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:51132001)、国家自然科学基金(批准号:11504101,11364018,51372174,J1210061)、湖北省自然科学基金(批准号:2014CFB610)和湖北省青年创新团队基金(批准号:T201429)资助的课题.
      Corresponding author: Zhu Yong-Dan, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn ; Li Mei-Ya, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51132001), the National Natural Science Foundation of China (Grant Nos. 11504101, 11364018, 51372174, J1210061), the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB610), and the Excellent Young Innovation Team Project of Hubei Province, China (Grant No. T201429).
    [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Dong S X, Zhai J Y, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [4]

    Dong S X, Zhai J Y, Xing Z P, Li J F, Viehland D 2005 Appl. Phys. Lett. 86 102901

    [5]

    Gao J, Shen L, Wang Y, Gray D, Li J F, Viehland D 2011 J. Appl. Phys. 109 074507

    [6]

    Leung C M, Or S W, Ho S L 2013 Rev. Sci. Instrum. 84 125003

    [7]

    Jia Y M, Xue A X, Zhou Z H, Wu Z, Chen J R, Ma K, Zhang Y H, Zhou J Y, Wang Y, Chan H L W 2013 Int. J. Hydrogen Energy. 38 14915

    [8]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 62 058503]

    [9]

    Fetisov Y K, Srinivasan G 2005 Electron. Lett. 41 1066

    [10]

    Tatarenko A S, Srinivasan G, Bichurin M I 2006 Appl. Phys. Lett. 88 183507

    [11]

    Lou J, Reed D, Liu M, Sun N X 2009 Appl. Phys. Lett. 94 112508

    [12]

    Li Z, Wang J, Lin Y, Nan C W 2010 Appl. Phys. Lett. 96 162505

    [13]

    Hu J M, Li Z, Chen L Q, Nan C W 2011 Nat. Commun. 2 553

    [14]

    Astrov D 1961 Sov. Phys. JETP 13 729

    [15]

    Folen V, Rado G, Stalder E 1961 Phys. Rev. Lett. 6 607

    [16]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [17]

    Nan C W 1994 Phys. Rev. B: Condens. Matter 50 6082

    [18]

    Priya S, Islam R, Dong S X, Viehland D 2007 J. Electroceram. 19 149

    [19]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [20]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 J. Appl. Phys. 40 4948

    [21]

    Srinivasan G 2010 Annu. Rev. Mater. Res. 40 153

    [22]

    Kirchhof C, Krantz M, Teliban I, Jahns R, Marauska S, Wagner B, Knöchel R, Gerken M, Meyners D, Quandt E 2013 Appl. Phys. Lett. 102 232905

    [23]

    Leung C M, Or S W, Ho S L, Lee K Y 2014 IEEE Sens. J. 14 4305

    [24]

    Jia Y M, Zhou D, Luo L H, Zhao X Y, Luo H S, Or S W, Chan H L W 2007 Appl. Phys. A 89 1025

    [25]

    Lu S G, Fang Z, Furman E, Wang Y, Zhang Q M, Mudryk Y, Gschneidner K A, Pecharsky V K, Nan C W 2010 Appl. Phys. Lett. 96 102902

    [26]

    Xing Z P, Li J F, Viehland D 2008 Appl. Phys. Lett. 93 013505

    [27]

    Xing Z P, Xu K, Dai G Y, Li J F, Viehland D 2011 J. Appl. Phys. 110 104510

    [28]

    Xing Z P, Xu K 2013 Sens. Actuators A 189 182

    [29]

    Liu G X, Li X T, Chen J G, Shi H D, Xiao W L, Dong S X 2012 Appl. Phys. Lett. 101 142904

    [30]

    Radchenko G S, Radchenko M G 2014 Tech. Phys. 50 1457

    [31]

    Liu G X, Ci P H, Dong S X 2014 J. Appl. Phys. 115 164104

    [32]

    Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Arrays (Revised Edition) (Beijing: Peking Univ. Press) p93 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (修订版) (北京: 北京大学出版社) 第93页]

    [33]

    Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908

  • [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Dong S X, Zhai J Y, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [4]

    Dong S X, Zhai J Y, Xing Z P, Li J F, Viehland D 2005 Appl. Phys. Lett. 86 102901

    [5]

    Gao J, Shen L, Wang Y, Gray D, Li J F, Viehland D 2011 J. Appl. Phys. 109 074507

    [6]

    Leung C M, Or S W, Ho S L 2013 Rev. Sci. Instrum. 84 125003

    [7]

    Jia Y M, Xue A X, Zhou Z H, Wu Z, Chen J R, Ma K, Zhang Y H, Zhou J Y, Wang Y, Chan H L W 2013 Int. J. Hydrogen Energy. 38 14915

    [8]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 62 058503]

    [9]

    Fetisov Y K, Srinivasan G 2005 Electron. Lett. 41 1066

    [10]

    Tatarenko A S, Srinivasan G, Bichurin M I 2006 Appl. Phys. Lett. 88 183507

    [11]

    Lou J, Reed D, Liu M, Sun N X 2009 Appl. Phys. Lett. 94 112508

    [12]

    Li Z, Wang J, Lin Y, Nan C W 2010 Appl. Phys. Lett. 96 162505

    [13]

    Hu J M, Li Z, Chen L Q, Nan C W 2011 Nat. Commun. 2 553

    [14]

    Astrov D 1961 Sov. Phys. JETP 13 729

    [15]

    Folen V, Rado G, Stalder E 1961 Phys. Rev. Lett. 6 607

    [16]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [17]

    Nan C W 1994 Phys. Rev. B: Condens. Matter 50 6082

    [18]

    Priya S, Islam R, Dong S X, Viehland D 2007 J. Electroceram. 19 149

    [19]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [20]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 J. Appl. Phys. 40 4948

    [21]

    Srinivasan G 2010 Annu. Rev. Mater. Res. 40 153

    [22]

    Kirchhof C, Krantz M, Teliban I, Jahns R, Marauska S, Wagner B, Knöchel R, Gerken M, Meyners D, Quandt E 2013 Appl. Phys. Lett. 102 232905

    [23]

    Leung C M, Or S W, Ho S L, Lee K Y 2014 IEEE Sens. J. 14 4305

    [24]

    Jia Y M, Zhou D, Luo L H, Zhao X Y, Luo H S, Or S W, Chan H L W 2007 Appl. Phys. A 89 1025

    [25]

    Lu S G, Fang Z, Furman E, Wang Y, Zhang Q M, Mudryk Y, Gschneidner K A, Pecharsky V K, Nan C W 2010 Appl. Phys. Lett. 96 102902

    [26]

    Xing Z P, Li J F, Viehland D 2008 Appl. Phys. Lett. 93 013505

    [27]

    Xing Z P, Xu K, Dai G Y, Li J F, Viehland D 2011 J. Appl. Phys. 110 104510

    [28]

    Xing Z P, Xu K 2013 Sens. Actuators A 189 182

    [29]

    Liu G X, Li X T, Chen J G, Shi H D, Xiao W L, Dong S X 2012 Appl. Phys. Lett. 101 142904

    [30]

    Radchenko G S, Radchenko M G 2014 Tech. Phys. 50 1457

    [31]

    Liu G X, Ci P H, Dong S X 2014 J. Appl. Phys. 115 164104

    [32]

    Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Arrays (Revised Edition) (Beijing: Peking Univ. Press) p93 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (修订版) (北京: 北京大学出版社) 第93页]

    [33]

    Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像.  , 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [3] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究.  , 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料.  , 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能.  , 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [6] 黄浩, 张侃, 吴明, 李虎, 王敏涓, 张书铭, 陈建宏, 文懋. SiC纤维增强Ti17合金复合材料轴向残余应力的拉曼光谱和X射线衍射法对比研究.  , 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [7] 俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明. 多铁性磁电器件研究进展.  , 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [8] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性.  , 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [9] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性.  , 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [10] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析.  , 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [11] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究.  , 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [12] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响.  , 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [13] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究.  , 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [14] 李振武. 纳米CdS/碳纳米管复合材料的光电特性.  , 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [15] 霍雁, 张存林. 碳纤维复合材料内部缺陷深度的定量红外检测.  , 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [16] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究.  , 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [17] 孙建平, 翁家宝, 黄小珠, 马琳璞. 聚(2,5-二丁氧基)对苯乙炔/多壁碳纳米管复合材料的制备和性能研究.  , 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [18] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究.  , 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [19] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析.  , 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  5996
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-06
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map