搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性磁式压电振动能量采集系统建模与分析

唐炜 王小璞 曹景军

引用本文:
Citation:

非线性磁式压电振动能量采集系统建模与分析

唐炜, 王小璞, 曹景军

Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics

Tang Wei, Wang Xiao-Pu, Cao Jing-Jun
PDF
导出引用
  • 为便于评价、优化磁式压电振动能量采集系统的性能, 系统研究了该类系统的建模与分析方法, 建立了非线性的分布参数模型用于描述系统的非线性动力学行为, 并采用谐波平衡法给出了谐波响应的解析解. 随后利用仿真模型分析了磁铁间距、加速度幅值、负载阻抗对输出功率的影响, 比较了不同激励频率和加速度幅值下的最优阻抗. 结果表明: 双稳态特性适用于低强度的振动环境, 且愈接近临界区域, 输出功率愈高, 而单稳态渐硬特性适用于高强度振动环境, 其最优间距并不靠近临界区域; 阱间大幅运动和阱内小幅运动均存在高低能量态共存的现象, 愈接近临界区域, 现象愈明显; 激振频率是影响最优负载阻抗的决定性因素.
    Modeling and analyzing of the piezoelectric vibration energy harvester using permanent magnets are systematically investigated to facilitate the evaluation and optimization of such a harvester. We set up a distributed-parameter model for describing nonlinear dynamic behaviors of these harvesters,and present harmonic analytical solution by using harmonic balance method. An analysis is performed using the simulation model to determine the effects of the distance between two magnets, amplitude of acceleration, electrical load resistance on the level of the output power. The optimum resistive loads under different vibration frequencies and accelerations are also compared. The results show that the bistable configuration is applicable to a small excitation case, and the closer to the transition region the small excitation position, the more the power can be harvested. Conversely, the monostable hardening configuration is suited for the large excitation case, the corresponding optimal magnet distance is not close to the transition region. Furthermore, the large amplitude oscillation between two potential wells and small amplitude oscillation within one potential well also bring forth coexisting phenomena of high-energy response and low-energy response; the closer to the transition region the oscillation position, the more obivious the coexisting phenomenon is. It is also demonstrated that exciting frequency is a decisive factor of optimum load resistance.
    • 基金项目: 国家自然科学基金(批准号: 50905140)、陕西省自然科学基础研究计划(批准号: 2012JQ7003)和长安大学高速公路筑养装备与技术教育部工程中心开放基金(批准号: 2013G1502054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50905140), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7003), and the Engineering Research Center of Expressway Construction and Maintenance Equipment and Technology of the Ministry of Education, China (Grant No. 2013G1502054).
    [1]

    Zhu D B, Tudor M J, Beeby S P 2010 Meas. Sci. Technol. 21 022001

    [2]

    Tang L H, Yang Y, Soh C K 2010 J. Intell. Mater. Syst. Struct. 21 1867

    [3]

    Shahruz S M 2008 J. Comput. Nonlinear Dyn. 3 041001

    [4]

    Stanton S, McGehee C, Mann B 2009 Appl. Phys. Lett. 95 174103

    [5]

    Ramlan R, Brennan M J, Mace B R, Burrow S G 2012 J. Intell. Mater. Syst. Struct. 23 1423

    [6]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [7]

    Tang L H, Yang Y, Soh C K 2012 J. Intell. Mater. Syst. Struct. 23 1433

    [8]

    Stanton S C, McGehee C C, Mann B P 2010 Physica D 239 640

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨永民 2011 60 074301]

    [10]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 61 210505]

    [11]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Acta Phys. Sin. 63 090501 (in Chinese) [高毓璣, 冷永刚, 范胜波, 赖志慧 2014 63 090501]

    [12]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [13]

    Erturk A, Inman D J 2011 Piezoelectric Energy Harvesting (Chichester: Wiley), pp171, 345

    [14]

    Yung K W, Landecker P B, Villani D D 1998 Magn. Electr. Separ. 9 39

    [15]

    Bryant M, Ephrahim G 2011 J. Vib. Acoust. 133 011010

    [16]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

  • [1]

    Zhu D B, Tudor M J, Beeby S P 2010 Meas. Sci. Technol. 21 022001

    [2]

    Tang L H, Yang Y, Soh C K 2010 J. Intell. Mater. Syst. Struct. 21 1867

    [3]

    Shahruz S M 2008 J. Comput. Nonlinear Dyn. 3 041001

    [4]

    Stanton S, McGehee C, Mann B 2009 Appl. Phys. Lett. 95 174103

    [5]

    Ramlan R, Brennan M J, Mace B R, Burrow S G 2012 J. Intell. Mater. Syst. Struct. 23 1423

    [6]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [7]

    Tang L H, Yang Y, Soh C K 2012 J. Intell. Mater. Syst. Struct. 23 1433

    [8]

    Stanton S C, McGehee C C, Mann B P 2010 Physica D 239 640

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨永民 2011 60 074301]

    [10]

    Sun S, Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese) [孙舒, 曹树谦 2012 61 210505]

    [11]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Acta Phys. Sin. 63 090501 (in Chinese) [高毓璣, 冷永刚, 范胜波, 赖志慧 2014 63 090501]

    [12]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [13]

    Erturk A, Inman D J 2011 Piezoelectric Energy Harvesting (Chichester: Wiley), pp171, 345

    [14]

    Yung K W, Landecker P B, Villani D D 1998 Magn. Electr. Separ. 9 39

    [15]

    Bryant M, Ephrahim G 2011 J. Vib. Acoust. 133 011010

    [16]

    Erturk A, Inman D J 2011 J. Sound Vib. 330 2339

  • [1] 曾闵, 罗颖, 江虹. 无线能量传输支持的设备到设备多播能量协作传输机制.  , 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [2] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性.  , 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [3] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析.  , 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [4] 吴娟娟, 冷永刚, 乔海, 刘进军, 张雨阳. 窄带随机激励双稳压电悬臂梁响应机制与能量采集研究.  , 2018, 67(21): 210502. doi: 10.7498/aps.67.20180072
    [5] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器.  , 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [6] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计.  , 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [7] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究.  , 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [8] 谭丹, 冷永刚, 范胜波, 高毓璣. 外加磁场压电悬臂梁能量采集系统的磁化电流法磁力研究.  , 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [9] 高毓璣, 冷永刚, 范胜波, 赖志慧. 弹性支撑双稳压电悬臂梁振动响应及能量采集研究.  , 2014, 63(9): 090501. doi: 10.7498/aps.63.090501
    [10] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [11] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学.  , 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [12] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子.  , 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [13] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [14] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究.  , 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [15] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法.  , 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [16] 邹建龙, 马西奎. 一类由饱和引起的非线性现象.  , 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [17] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟.  , 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [18] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解.  , 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [19] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法.  , 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  7485
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-09
  • 修回日期:  2014-07-30
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map