搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶极子位置及偏振对激发光子晶体H1微腔的影响

赵彦辉 钱琛江 唐静 孙悦 彭凯 许秀来

引用本文:
Citation:

偶极子位置及偏振对激发光子晶体H1微腔的影响

赵彦辉, 钱琛江, 唐静, 孙悦, 彭凯, 许秀来

Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity

Zhao Yan-Hui, Qian Chen-Jiang, Tang Jing, Sun Yue, Peng Kai, Xu Xiu-Lai
PDF
导出引用
  • 光子晶体微腔和量子点的集成是实现量子信息处理非常具有潜力的平台之一, 利用微腔和量子点的耦合可以制备纠缠光子对, 实现对量子态的操控. 因为光子晶体微腔具有品质因子高、模场体积小等优点, 可以极大地增强光与物质之间的相互作用, 从而易于实现量子态在不同物理体系之间的转换. 通过单量子点和光子晶体H1微腔的耦合可以产生纠缠光子对, 因为H1微腔具有简并的、模式偏振正交的基态模式. 通常微腔模式的激发随着量子点在微腔中的位置变化而改变, 本文用时域有限差分方法研究了偶极子光源的位置及偏振对激发光子晶体H1微腔模式的影响. 结果表明: 通过改变偶极子光源位置可以选择性地激发H1 微腔简并模式中的一个; 具有某一偏振的偶极子光源只能激发相应偏振的微腔模式; 模式激发强度的大小也是由偶极子光源在微腔中的位置决定的. 鉴于目前量子点在微腔中的位置尚不能精确控制, 所以微腔模式受激发光源位置的影响的研究具有重要意义.
    The integration of photonic crystal cavity with quantum dot paves the way for photonic-based quantum information processing. Photonic crystal cavity has a high-quality factor and small mode volume, which can be utilized to enhance the interaction between light and matter. Two degenerate fundamental modes with orthogonal polarizations exist in photonic crystal H1 cavity. Entangled photon pairs can be generated with a single quantum dot coupled to degenerate H1 cavity modes. Therefore a coupling system comprised of quantum dot and photonic crystal H1 cavity is a promising platform to implement quantum information processing. The excitations of cavity modes are mostly affected by the location of the single quantum dot, namely a dipole source. For the two degenerate photonic crystal H1 cavity modes, the location of the dipole source determines which mode is excited. In this paper, the effects of location and polarization of a dipole source on the excitation of photonic crystal H1 cavity are investigated with the finite-difference time-domain method, a numerical analysis technique for computing the electrodynamics. We first design a photonic crystal slab structure patterned with hexagonal lattice of air holes. Combining the light modulation by the period lattice in the slab plane and the total internal reflection in the perpendicular direction, photonic bandgap is generated, which inhibits the propagation of photon with certain frequencies. By removing one of the air holes from the photonic crystal slab, an H1 cavity is formed with two degenerate fundamental modes. One mode is x-polarized, and the other one is y-polarized. Next, a dipole source is used to excite the H1 cavity modes. When the dipole source is located at the left to the H1 cavity center, only y-polarized mode is excited. While locating the dipole source above the H1 cavity center, only x-polarized mode is excited. Therefore each degenerate mode of H1 cavity can be selectively excited with the diploe source located at different positions in the cavity. Following that, the H1 cavity modes excited with the dipole sources with different polarizations are also studied. The x-polarized dipole source can only excite the cavity mode with x-polarization, while the y-polarized dipole source can only excite the y-polarized cavity mode accordingly. It can be seen that the dipole source with specific polarization can only excite the modes with corresponding polarization. The effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity are important for understanding the fundamental physics of entangled photon generation with a coupled quantum dot and photonic crystal system.
      通信作者: 许秀来, xlxu@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB328706, 2014CB921003)、国家自然科学基金(批准号: 91436101, 61275060)、中国科学院先导项目(批准号: XDB07030200)和中国科学院百人计划资助的课题.
      Corresponding author: Xu Xiu-Lai, xlxu@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB328706, 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 91436101, 61275060), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030200) and the Hundred Talents Program of the Chinese Academy of Sciences.
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Chow E, Lin S Y, Johnson S G, Villeneuve P R, Joannopoulos J D, Wendt J R, Vawter G A, Zubrzycki W, Hou H, Alleman A 2000 Nature 407 983

    [4]

    Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A 1999 Phys. Rev. B 60 5751

    [5]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944

    [6]

    Chalcraft A R A, Lam S, OBrien D, Krauss T F, Sahin M, Szymanski D, Sanvitto D, Oulton R, Skolnick M S, Fox A M, Whittaker D M, Liu H Y, Hopkins M 2007 Appl. Phys. Lett. 90 241117

    [7]

    Takagi H, Ota Y, Kumagai N, Ishida S, Iwamoto S, Arakawa Y 2012 Opt. Express 20 28292

    [8]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [9]

    Brossard F S F, Xu X L, Williams D A, Hadjipanayi M, Hugues M, Hopkinson M, Wang X, Taylor R A 2010 Appl. Phys. Lett. 97 111101

    [10]

    Badolato A, Winger M, Hennessy K J, Hu E L, Imamoğlu A 2008 C. R. Phys. 9 850

    [11]

    Tang J, Geng W D, Xu X L 2015 Sci. Rep. 5 09252

    [12]

    Cao S, Xu X L 2014 Phyisics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [13]

    Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [14]

    Atlasov K A, Karlsson K F, Rudra A, Dwir B, Kapon E 2008 Opt. Express 16 16255

    [15]

    Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T, Noda S 2012 Nat. Photon. 6 56

    [16]

    Faraon A, Waks E, Englund D, Fushman I, Vučković J 2007 Appl. Phys. Lett. 90 073102

    [17]

    Brossard F S F, Reid B P L, Chan C C S, Xu X L, Griffiths J P, Williams D A, Murray R, Taylor R A 2013 Opt. Express 21 16934

    [18]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [19]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205

    [20]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Florida: CRC Press) pp1-367

    [21]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [22]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [23]

    Stace T M, Milburn G J, Barnes C H W 2003 Phys. Rev. B 67 085317

    [24]

    Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A, Malpuech G 2008 Phys. Rev. Lett. 100 240404

    [25]

    Larqu M, Karle T, Robert-Philip I, Beveratos A 2009 New J. Phys. 11 033022

    [26]

    Luxmoore I J, Ahmadi E D, Fox A M, Hugues M, Skolnick M S 2011 Appl. Phys. Lett. 98 041101

    [27]

    Luxmoore I J, Ahmadi E D, Luxmoore B J, Wasley N A, Tartakovskii A I, Hugues M, Skolnick M S, Fox A M 2012 Appl. Phys. Lett. 100 121116

    [28]

    Coles R J, Prtljaga N, Royall B, Luxmoore I J, Fox A M, Skolnick M S 2014 Opt. Express 22 2376

    [29]

    Bentham C, Itskevich I E, Coles R J, Royall B, Clarke E, OHara J, Prtljaga N, Fox A M, Skolnick M S, Wilson L R 2015 Appl. Phys. Lett. 106 221101

    [30]

    Hennessy K, Badolato A, Winger M, Gerace D, Atatre M, Gulde S, Flt S, Hu E L, Imamoğlu A 2007 Nature 445 896

    [31]

    Imamoğlu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204

    [32]

    Reithmaier J P, Sek G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197

    [33]

    Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, Petroff P M, Bouwmeester D 2009 Appl. Phys. Lett. 94 111115

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Chow E, Lin S Y, Johnson S G, Villeneuve P R, Joannopoulos J D, Wendt J R, Vawter G A, Zubrzycki W, Hou H, Alleman A 2000 Nature 407 983

    [4]

    Johnson S G, Fan S H, Villeneuve P R, Joannopoulos J D, Kolodziejski L A 1999 Phys. Rev. B 60 5751

    [5]

    Akahane Y, Asano T, Song B S, Noda S 2003 Nature 425 944

    [6]

    Chalcraft A R A, Lam S, OBrien D, Krauss T F, Sahin M, Szymanski D, Sanvitto D, Oulton R, Skolnick M S, Fox A M, Whittaker D M, Liu H Y, Hopkins M 2007 Appl. Phys. Lett. 90 241117

    [7]

    Takagi H, Ota Y, Kumagai N, Ishida S, Iwamoto S, Arakawa Y 2012 Opt. Express 20 28292

    [8]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [9]

    Brossard F S F, Xu X L, Williams D A, Hadjipanayi M, Hugues M, Hopkinson M, Wang X, Taylor R A 2010 Appl. Phys. Lett. 97 111101

    [10]

    Badolato A, Winger M, Hennessy K J, Hu E L, Imamoğlu A 2008 C. R. Phys. 9 850

    [11]

    Tang J, Geng W D, Xu X L 2015 Sci. Rep. 5 09252

    [12]

    Cao S, Xu X L 2014 Phyisics 43 740 (in Chinese) [曹硕, 许秀来 2014 物理 43 740]

    [13]

    Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D 1996 Phys. Rev. Lett. 77 3787

    [14]

    Atlasov K A, Karlsson K F, Rudra A, Dwir B, Kapon E 2008 Opt. Express 16 16255

    [15]

    Sato Y, Tanaka Y, Upham J, Takahashi Y, Asano T, Noda S 2012 Nat. Photon. 6 56

    [16]

    Faraon A, Waks E, Englund D, Fushman I, Vučković J 2007 Appl. Phys. Lett. 90 073102

    [17]

    Brossard F S F, Reid B P L, Chan C C S, Xu X L, Griffiths J P, Williams D A, Murray R, Taylor R A 2013 Opt. Express 21 16934

    [18]

    Zhao Y H, Qian C J, Qiu K S, Gao Y N, Xu X L 2015 Opt. Express 23 9211

    [19]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 114205

    [20]

    Kunz K S, Luebbers R J 1993 The Finite Difference Time Domain Method for Electromagnetics (Florida: CRC Press) pp1-367

    [21]

    Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G 2010 Comput. Phys. Commun. 181 687

    [22]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [23]

    Stace T M, Milburn G J, Barnes C H W 2003 Phys. Rev. B 67 085317

    [24]

    Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A, Malpuech G 2008 Phys. Rev. Lett. 100 240404

    [25]

    Larqu M, Karle T, Robert-Philip I, Beveratos A 2009 New J. Phys. 11 033022

    [26]

    Luxmoore I J, Ahmadi E D, Fox A M, Hugues M, Skolnick M S 2011 Appl. Phys. Lett. 98 041101

    [27]

    Luxmoore I J, Ahmadi E D, Luxmoore B J, Wasley N A, Tartakovskii A I, Hugues M, Skolnick M S, Fox A M 2012 Appl. Phys. Lett. 100 121116

    [28]

    Coles R J, Prtljaga N, Royall B, Luxmoore I J, Fox A M, Skolnick M S 2014 Opt. Express 22 2376

    [29]

    Bentham C, Itskevich I E, Coles R J, Royall B, Clarke E, OHara J, Prtljaga N, Fox A M, Skolnick M S, Wilson L R 2015 Appl. Phys. Lett. 106 221101

    [30]

    Hennessy K, Badolato A, Winger M, Gerace D, Atatre M, Gulde S, Flt S, Hu E L, Imamoğlu A 2007 Nature 445 896

    [31]

    Imamoğlu A, Awschalom D D, Burkard G, Divincenzo D P, Loss D, Sherwin M, Small A 1999 Phys. Rev. Lett. 83 4204

    [32]

    Reithmaier J P, Sek G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197

    [33]

    Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, Petroff P M, Bouwmeester D 2009 Appl. Phys. Lett. 94 111115

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制.  , 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计.  , 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [3] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征.  , 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [4] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用.  , 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [5] 梁宇宏, 李红娟, 尹辑文. 晶格弛豫方法研究PbSe量子点的带内弛豫过程.  , 2019, 68(12): 127301. doi: 10.7498/aps.68.20190187
    [6] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机.  , 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [7] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究.  , 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [8] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射.  , 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [9] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建.  , 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性.  , 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控.  , 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [12] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性.  , 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [13] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究.  , 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [14] 彭银生, 叶小玲, 徐波, 牛洁斌, 贾锐, 王占国, 梁松, 杨晓红. 二维GaAs 基光子晶体微腔的制作与光谱特性分析.  , 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [15] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析.  , 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [16] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化.  , 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [17] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计.  , 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [18] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点.  , 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [20] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性.  , 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
计量
  • 文章访问数:  7306
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-31
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map