搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下NH4ClO4结构、电子及弹性性质的第一性原理研究

刘博 王煊军 卜晓宇

引用本文:
Citation:

高压下NH4ClO4结构、电子及弹性性质的第一性原理研究

刘博, 王煊军, 卜晓宇

First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures

Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu
PDF
导出引用
  • 研究高压下NH4ClO4的结构和性质对于NH4ClO4在固体推进剂和炸药的安全应用具有重要意义. 采用基于色散校正密度泛函理论的第一性原理方法, 研究了0-15 GPa静水压力下NH4ClO4的晶体结构、分子结构、电子性质和弹性性质, 计算结果与实验值具有较好的一致性. 在压强为1, 4和9 GPa时, NH4ClO4的晶体参数、键长和分子构型等均出现不连续变化, 说明了在压强作用下结构发生变化. 随着压强增加, 氢键增多且作用增强, 由分子内氢键向分子内和分子间的氢键转变; 导带态密度峰值增加, 电子局域性增强, 晶体内N-H和Cl-O共价键作用增强, 带隙增大, 不同相变区域内带隙呈线性关系. 0-15 GPa条件下NH4ClO4的弹性常数满足力学稳定性标准, 采用Voigt-Reuss-Hill方法计算了体积模量B, 剪切模量G和杨氏模量E, 根据Cauchy压力和B/G值, 说明NH4ClO4属于韧性材料, 随着压强增加韧性增强.
    Ammonium perchlorate (NH4ClO4) is a highly energetic oxidizer widely used in solid propellants and explosives. Under extreme pressure conditions, significant changes are observed in the structures and properties of NH4ClO4. However, many studies of structural transformations of NH4ClO4 under high pressures have not formed a more consistent conclusion. In this study, the structural, electronic, and elastic properties of NH4ClO4 are investigated by first-principles calculations based on the density functional theory with dispersion correction (DFT-D) method in a range of 0-15 GPa. The unit cell volume and lattice parameters are optimized by GGA/PBE-TS, which leads to good agreement with the experimental structure parameters at 0 GPa, suggesting the reliability of the present calculation method. The calculated P-V data are fitted to the third-order Birch-Murnaghan equation of state, and the result provides better agreement with experimental result than other calculations for the unit cell with a volume V0 and bulk moduli B0 and B'. The comprehensive analyses of the lattice parameters, bond lengths, and hydrogen bonds under high pressure indicate that three structural transformations occur in NH4ClO4 at 1 GPa, 4 GPa, and 9 GPa. With increasing pressure, hydrogen bonding interaction gradually increases, and intra- and intermolecular hydrogen bonds are present in crystals. Results obtained from the band structures and state densities under high pressure indicate that NH4ClO4 exhibits good insulating properties. Valence band shifts towards low energy, conduction band shifts towards high energy, and electronic localization is enhanced. The charge density differences and Mulliken charge populations at different pressures reveal that the covalent interaction between the N-H and Cl-O bonds increases, and the ionicity of crystal decreases. The band gaps in different structural transition regions exhibit different linear increase trends with increasing pressure. The calculated elastic constants of NH4ClO4 satisfy elastic stability criteria of orthorhombic systems at pressures ranging from 0 GPa to 15 GPa, indicating that NH4ClO4 is mechanically stable. The bulk modulus, shear modulus, and Young's modulus are estimated by the Voigt-Reuss-Hill approach. The Cauchy pressures and B/G values indicate that NH4ClO4 exhibits ductility, attributed to the fact that NH4ClO4 is an ionic crystal, and ionic bonds are non-directional bonds; hence, NH4ClO4 is ductile and can be easily bended or reshaped. The results indicate that the ductility properties of NH4ClO4 increase with increasing pressure. All calculated properties are in excellent agreement with the available experimental results. These results will not only help to understand the structural transformations of NH4ClO4 under high pressures but also provide an important theoretical reference for the safe application of NH4ClO4 in solid propellants and explosives.
      通信作者: 刘博, liubo603@163.com
      Corresponding author: Liu Bo, liubo603@163.com
    [1]

    Vyazovkin S, Wight C A 1999 Chem. Mater. 11 3386

    [2]

    Brill T B, Budenz B T 2000 Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. 185 3

    [3]

    Stammler M, Bruenner R, Schmidt W, Orcutt D 1966 Advances in X-Ray Analysis (New York: Springer) pp170-189

    [4]

    Boldyrev V V 2006 Thermochim. Acta 443 1

    [5]

    Chaturvedi S, Dave P N 2013 J. Saudi Chem. Soc. 17 135

    [6]

    Bridgman P W 1937 Proceedings of the American Academy of Arts and Sciences 71 387

    [7]

    Sandstrom F W, Persson P A, Olinger B 1994 High-Pressure Science and Technology-1993 Colorado Springs, USA, June 28-July 2, 1993 p1409

    [8]

    Peiris S M, Pangilinan G I, Russell T P 2000 J. Phys. Chem. A 104 11188

    [9]

    Hunter S, Davidson A J, Morrison C A, Pulham C R, Richardson P, Farrow M J, Marshall W G, Lennie A R, Gould P J 2011 J. Phys. Chem. C 115 18782

    [10]

    Foltz M F, Maienschein J L 1995 Mater. Lett. 24 407

    [11]

    Yuan G, Feng R, Gupta Y M, Zimmerman K 2000 J. Appl. Phys. 88 2371

    [12]

    Peng Q, Rahul, Wang G, Liu G R, Suvranu D 2014 Phys. Chem. Chem. Phys. 16 19972

    [13]

    Wu C G, Wu W Y, Gong Y C, Dai B F, He S H, Huang Y H 2015 Acta Phys. Sin. 64 114213 (in Chinese) [吴成国, 武文远, 龚艳春, 戴斌飞, 何苏红, 黄雁华 2015 64 114213]

    [14]

    Zhu W, Wei T, Zhu W, Xiao H 2008 J. Phys. Chem. A 112 4688

    [15]

    Zhu W, Zhang X, Zhu W, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [16]

    Zhang J G, Zhang T L, Yang L, Yu K B 2002 Chin. J. Explosives Propellants 33 33 (in Chinese) [张建国, 张同来, 杨利, 郁开北 2002 火炸药学报 33 33]

    [17]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Conden. Matter 14 2717

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Pfrommer B G, Ct M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Birch F 1947 Phys. Rev. 71 809

    [23]

    Nyln J, Garcia F G, Mosel B D, Pttgen R, Hussermann U 2004 Solid State Sci. 6 147

    [24]

    Zhou P, Wang X Q, Zhou M, Xia C H, Shi L N, Hu C H 2013 Acta Phys. Sin. 62 087104 (in Chinese) [周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华 2013 62 087104]

    [25]

    Zhang X D, Jiang W 2016 Chin. Phys. B 25 026301

    [26]

    Vazquez F, Singh R S, Gonzalo J A 1976 J. Phys. Chem. Solids 37 451

    [27]

    Hausshl S 1990 Zeitschrift fr Kristallographie-Crystalline Materials 192 137

    [28]

    Yu R, Chong X, Jiang Y, Zhou R, Yuan W, Feng J 2015 RSC Adv. 5 1620

    [29]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [30]

    Jund P, Viennois R, Tao X, Niedziolka K, Tdenac J 2012 Phys. Rev. B 86 19901

    [31]

    Chen W, Yu C, Chiang K, Cheng H 2015 Intermetallics 62 60

    [32]

    Armstrong R W, Elban W L, Walley S 2013 Int. J. Mod. Phys. B 27 269

    [33]

    Sandusky H W, Beard B C, Glancy B C, Elban W L, Armstrong R W 1992 MRS Proceedings 296 93

    [34]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [35]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [36]

    Qi L, Jin Y, Zhao Y, Yang X, Zhao H, Han P 2015 J. Alloys Comp. 621 383

  • [1]

    Vyazovkin S, Wight C A 1999 Chem. Mater. 11 3386

    [2]

    Brill T B, Budenz B T 2000 Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics. 185 3

    [3]

    Stammler M, Bruenner R, Schmidt W, Orcutt D 1966 Advances in X-Ray Analysis (New York: Springer) pp170-189

    [4]

    Boldyrev V V 2006 Thermochim. Acta 443 1

    [5]

    Chaturvedi S, Dave P N 2013 J. Saudi Chem. Soc. 17 135

    [6]

    Bridgman P W 1937 Proceedings of the American Academy of Arts and Sciences 71 387

    [7]

    Sandstrom F W, Persson P A, Olinger B 1994 High-Pressure Science and Technology-1993 Colorado Springs, USA, June 28-July 2, 1993 p1409

    [8]

    Peiris S M, Pangilinan G I, Russell T P 2000 J. Phys. Chem. A 104 11188

    [9]

    Hunter S, Davidson A J, Morrison C A, Pulham C R, Richardson P, Farrow M J, Marshall W G, Lennie A R, Gould P J 2011 J. Phys. Chem. C 115 18782

    [10]

    Foltz M F, Maienschein J L 1995 Mater. Lett. 24 407

    [11]

    Yuan G, Feng R, Gupta Y M, Zimmerman K 2000 J. Appl. Phys. 88 2371

    [12]

    Peng Q, Rahul, Wang G, Liu G R, Suvranu D 2014 Phys. Chem. Chem. Phys. 16 19972

    [13]

    Wu C G, Wu W Y, Gong Y C, Dai B F, He S H, Huang Y H 2015 Acta Phys. Sin. 64 114213 (in Chinese) [吴成国, 武文远, 龚艳春, 戴斌飞, 何苏红, 黄雁华 2015 64 114213]

    [14]

    Zhu W, Wei T, Zhu W, Xiao H 2008 J. Phys. Chem. A 112 4688

    [15]

    Zhu W, Zhang X, Zhu W, Xiao H 2008 Phys. Chem. Chem. Phys. 10 7318

    [16]

    Zhang J G, Zhang T L, Yang L, Yu K B 2002 Chin. J. Explosives Propellants 33 33 (in Chinese) [张建国, 张同来, 杨利, 郁开北 2002 火炸药学报 33 33]

    [17]

    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Conden. Matter 14 2717

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [20]

    Pfrommer B G, Ct M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233

    [21]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [22]

    Birch F 1947 Phys. Rev. 71 809

    [23]

    Nyln J, Garcia F G, Mosel B D, Pttgen R, Hussermann U 2004 Solid State Sci. 6 147

    [24]

    Zhou P, Wang X Q, Zhou M, Xia C H, Shi L N, Hu C H 2013 Acta Phys. Sin. 62 087104 (in Chinese) [周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华 2013 62 087104]

    [25]

    Zhang X D, Jiang W 2016 Chin. Phys. B 25 026301

    [26]

    Vazquez F, Singh R S, Gonzalo J A 1976 J. Phys. Chem. Solids 37 451

    [27]

    Hausshl S 1990 Zeitschrift fr Kristallographie-Crystalline Materials 192 137

    [28]

    Yu R, Chong X, Jiang Y, Zhou R, Yuan W, Feng J 2015 RSC Adv. 5 1620

    [29]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [30]

    Jund P, Viennois R, Tao X, Niedziolka K, Tdenac J 2012 Phys. Rev. B 86 19901

    [31]

    Chen W, Yu C, Chiang K, Cheng H 2015 Intermetallics 62 60

    [32]

    Armstrong R W, Elban W L, Walley S 2013 Int. J. Mod. Phys. B 27 269

    [33]

    Sandusky H W, Beard B C, Glancy B C, Elban W L, Armstrong R W 1992 MRS Proceedings 296 93

    [34]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [35]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [36]

    Qi L, Jin Y, Zhao Y, Yang X, Zhao H, Han P 2015 J. Alloys Comp. 621 383

  • [1] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [2] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究.  , 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [3] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究.  , 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟.  , 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [6] 冯小勤, 贾建明, 陈贵宾. 弯曲BN纳米片的电子性质及其调制.  , 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [7] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [8] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究.  , 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [9] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算.  , 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究.  , 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [11] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究.  , 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [14] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [15] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究.  , 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [16] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算.  , 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [17] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究.  , 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [18] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [19] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [20] 周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛. 钒基固溶体储氢材料弹性性质第一性原理研究.  , 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
计量
  • 文章访问数:  7918
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-20
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map