搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探空温度传感器的计算流体动力学分析与实验研究

戴伟 刘清惓 杨杰 宿恺峰 韩上邦 施佳驰

引用本文:
Citation:

探空温度传感器的计算流体动力学分析与实验研究

戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰

Computational fluid dynamics analysis and experimental study of sounding temperature sensor

Dai Wei, Liu Qing-Quan, Yang Jie, Su Kai-Feng, Han Shang-Bang, Shi Jia-Chi
PDF
导出引用
  • 伴随着数值天气预报和气候变化研究精细化程度的不断提高, 希望探空温度传感器的观测精度达到0.1 K数量级. 为了实现此目标, 运用计算流体动力学方法对珠状热敏电阻从海平面上升至20 km高空的整个过程进行数值仿真分析. 并在此基础上, 针对影响测温精度的太阳辐射强度和传感器倾斜角度两个因素进行分析. 仿真结果表明, 太阳辐射强度和海拔高度是辐射误差的重要影响因子. 当传感器倾斜角度为90时, 珠状热敏电阻的辐射误差最小. 通过麦夸特法和通用全局优化法对仿真数据进行拟合, 获得不同海拔高度和太阳辐射强度下的辐射误差修正方程; 为验证方程的准确性, 设计和搭建太阳辐射误差模拟系统. 实验结果表明, 辐射误差实验测量值与修正方程修正值之间的平均偏移量为0.017 K, 均方根值RMS误差为0.023 K, 验证了计算流体动力学方法、麦夸特法和通用全局优化法获得辐射误差数据的准确性.
    Owing to the fact that the increasing amount of attention has been focused on numerical weather forecast and climate change research, it is desired that the observation error of upper air temperature with using sounding temperature sensors can be reduced down to 0.1 K. However, the temperature measurement errors of bead thermistor sounding temperature sensors, induced by solar radiation, are on the order of 1 K or more, which is a few orders of magnitude larger than the errors produced by the measurement circuits and digital signal processing systems in radiosondes. Hence, the solar radiation error poses an important bottleneck for improving the measurement accuracy. To tackle this problem, a numerical analysis method is proposed in this research. By employing a computational fluid dynamics (CFD) method, the influences of various solar radiation intensity, sensor angles, and air pressures from sea level to 20 km altitude on temperature measurement accuracy are studied. In this CFD model, the boundary conditions of external convection and solar radiation of the bead thermistor are taken into consideration. The modeling results indicate that solar radiation intensity and altitude are important factors that affect the amplitude of the radiation error. With the elevation increasing from sea level, the solar heating error appears to have an exponential correlation with the altitude, which exhibits a growing slop rate. When the sensor angle is 90o, the radiation error of a bead thermistor sensor probe is minimal. The simulation results are fitted by a Levenberg-Marquardt method and a global optimization method. A correction equation of the radiation error is obtained, where the altitude of the sensor and solar radiation intensity act as two major variables in the equation. In order to verify the equation obtained in this study, an experimental platform for solar radiation error, which includes a low-pressure temperature chamber, a rotation apparatus, an LED-based radiation source, and a wireless communication system, is designed and constructed. It can be found that the solar radiation errors of the bead thermistor based on fluid dynamics numerical calculation are generally consistent with experimental data. The average offset and root mean square error between the correction equation and experimental results are 0.017 K and 0.023 K, respectively, which can demonstrate the accuracies of the computational fluid dynamics method, the Levenberg-Marquardt method and the global optimization method proposed in this research. The methods and techniques introduced in this paper may open the way for correcting the solar radiation errors of the bead thermistor sounding temperature sensors.
      通信作者: 戴伟, daiweiilove@163.com
    • 基金项目: 国家公益性行业(气象)科研专项(批准号: GYHY200906037, GYHY201306079)、国家自然科学基金(批准号: 41275042, 61306138)和江苏高校优势学科II期建设工程资助的课题.
      Corresponding author: Dai Wei, daiweiilove@163.com
    • Funds: Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant Nos. GYHY200906037, GYHY201306079), the National Natural Science Foundation of China (Grant Nos. 412475042, 61306138), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Kann A, Seidl H, Wittmann C, Haiden T 2010 Wea. Forecast. 25 290

    [2]

    Frick C, Wernli H 2012 Wea. Forecast. 27 1217

    [3]

    Ware H R, Rocken C, Solheim S F, Exner M 1996 Bull. Amer. Meteor. Soc. 77 19

    [4]

    Seidel D J, Angell J K, Christy J, Free M, Klein S A, Lanzante J R, Mears C, Parker D, Schabel M, Spencer R, Sterin A, Thorne P, Wentz F 2004 J. Climate 17 2225

    [5]

    Thorne P W, Parker D E, Christy J R, Mears C A 2005 Bull. Amer. Meteor. Soc. 86 1437

    [6]

    Free M, Durre I, Aguilar E, Seidel D, Peterson T C, Eskridge R E, Luers J K, Parker D, Gordon M, Lanzante J, Klein S, Christy J, Schroeder S, Soden B, McMillin L M, Weatherhead E 2002 Bull. Amer. Meteor. Soc. 83 891

    [7]

    Seidel D J, Free M 2006 J. Climate 19 854

    [8]

    Luers J K {1997 J. Climate 11 1002

    [9]

    Ji X Q {2005 Xinjiang Meteorol. 28 12 (in Chinese) [冀新琪 2005 新疆气象 28 12]

    [10]

    Liu M, Pu M J, Gao P, Shen S Q, Sun Y {2008 Meteorol. Sci. Technol. 36 728 (in Chinese) [刘梅, 濮梅娟, 高萍, 沈树勤, 孙燕 2008 气象科技 36 728]

    [11]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [12]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S {2007 Science 315 1497

    [13]

    Harris P P, Huntingford C, Cox P M 2008 Philosoph. Trans. Royal Soc. London B: Biol. Sci. 363 1753

    [14]

    Tang H Y, Zhai P M 2005 Chin. J. Geophys. 48 526 (in Chinese) [唐红玉, 翟盘茂 2005 地球 48 526]

    [15]

    Xue D Q, Tan Z M, Gong D L Wang X T 2007 Plateau Meteorol. 26 141 (in Chinese) [薛德强, 谈哲敏, 龚佃利, 王兴堂 2007 高原气象 26 141]

    [16]

    Cheng Y, Li D L, Hu W C, Shen F {2002 Plateau Meteorol. 21 217 (in Chinese) [程瑛, 李栋梁, 胡文超, 沈福 2002 高原气象 21 217]

    [17]

    Wang R Y, Zhou S W, Wu P, Wang X M, Wu Y {2010 Meteorolog. Environm. Sci. 33 31 (in Chinese) [王荣英, 周顺武, 吴萍, 王晓敏, 吴雁 2010 气象与环境科学 33 31]

    [18]

    Shangguan M J, Xia H Y, Dou X K, Wang C, Qiu J W, Zhang Y P, Shu Z F, Xue X H 2015 Chin. Phys. B 24 094212

    [19]

    Zhao R C, Xia H Y, Dou X K, Sun D S, Han Y L, Shangguan M J, Guo Jie, Shu Z F 2015 Chin. Phys. B 24 024218

    [20]

    Sheng Z, Fang H X 2013 Chin. Phys. B 22 029301

    [21]

    Sherwood S C, Lanzante J R, Meyer C L {2005 Science 9 1556

    [22]

    Randel W J, Wu F 2006 J. Clim. 19 2094

    [23]

    Haimberger L, Tavolato C, Sperka S 2008 J. Clim. 21 4587

    [24]

    Schmidlin F J, Luers J K, Hoffman P D {1986 NASA Tech. 2637 1

    [25]

    Luers J K 1990 J. Atmos. Ocean. Technol. 7 882

    [26]

    Luers J K, Eskridge R E 1995 J. Appl. Meteor. 34 1241

    [27]

    Ruffieux D, Joss J 2003 J. Atmos. Ocean. Technol. 20 1576

    [28]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]

    [29]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 63 144701]

    [30]

    Wang X H, Yi S T, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706 (in Chinese) [王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 64 054706]

    [31]

    NOAA, NASA, USAF 1976 U. S. Standard Atmosphere (Washington D.C.: U.S. Government Printing office) pp53-63

    [32]

    Gao Y, Liu H B, Wang L, Gu G C 2013 Chin. Opt. 6 570 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2013 中国光学 6 570]

    [33]

    Gao Y, Liu H B, Wang L, Gu G C {2014 Chin. Opt. 7 657 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2014 中国光学 7 657]

  • [1]

    Kann A, Seidl H, Wittmann C, Haiden T 2010 Wea. Forecast. 25 290

    [2]

    Frick C, Wernli H 2012 Wea. Forecast. 27 1217

    [3]

    Ware H R, Rocken C, Solheim S F, Exner M 1996 Bull. Amer. Meteor. Soc. 77 19

    [4]

    Seidel D J, Angell J K, Christy J, Free M, Klein S A, Lanzante J R, Mears C, Parker D, Schabel M, Spencer R, Sterin A, Thorne P, Wentz F 2004 J. Climate 17 2225

    [5]

    Thorne P W, Parker D E, Christy J R, Mears C A 2005 Bull. Amer. Meteor. Soc. 86 1437

    [6]

    Free M, Durre I, Aguilar E, Seidel D, Peterson T C, Eskridge R E, Luers J K, Parker D, Gordon M, Lanzante J, Klein S, Christy J, Schroeder S, Soden B, McMillin L M, Weatherhead E 2002 Bull. Amer. Meteor. Soc. 83 891

    [7]

    Seidel D J, Free M 2006 J. Climate 19 854

    [8]

    Luers J K {1997 J. Climate 11 1002

    [9]

    Ji X Q {2005 Xinjiang Meteorol. 28 12 (in Chinese) [冀新琪 2005 新疆气象 28 12]

    [10]

    Liu M, Pu M J, Gao P, Shen S Q, Sun Y {2008 Meteorol. Sci. Technol. 36 728 (in Chinese) [刘梅, 濮梅娟, 高萍, 沈树勤, 孙燕 2008 气象科技 36 728]

    [11]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [12]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S {2007 Science 315 1497

    [13]

    Harris P P, Huntingford C, Cox P M 2008 Philosoph. Trans. Royal Soc. London B: Biol. Sci. 363 1753

    [14]

    Tang H Y, Zhai P M 2005 Chin. J. Geophys. 48 526 (in Chinese) [唐红玉, 翟盘茂 2005 地球 48 526]

    [15]

    Xue D Q, Tan Z M, Gong D L Wang X T 2007 Plateau Meteorol. 26 141 (in Chinese) [薛德强, 谈哲敏, 龚佃利, 王兴堂 2007 高原气象 26 141]

    [16]

    Cheng Y, Li D L, Hu W C, Shen F {2002 Plateau Meteorol. 21 217 (in Chinese) [程瑛, 李栋梁, 胡文超, 沈福 2002 高原气象 21 217]

    [17]

    Wang R Y, Zhou S W, Wu P, Wang X M, Wu Y {2010 Meteorolog. Environm. Sci. 33 31 (in Chinese) [王荣英, 周顺武, 吴萍, 王晓敏, 吴雁 2010 气象与环境科学 33 31]

    [18]

    Shangguan M J, Xia H Y, Dou X K, Wang C, Qiu J W, Zhang Y P, Shu Z F, Xue X H 2015 Chin. Phys. B 24 094212

    [19]

    Zhao R C, Xia H Y, Dou X K, Sun D S, Han Y L, Shangguan M J, Guo Jie, Shu Z F 2015 Chin. Phys. B 24 024218

    [20]

    Sheng Z, Fang H X 2013 Chin. Phys. B 22 029301

    [21]

    Sherwood S C, Lanzante J R, Meyer C L {2005 Science 9 1556

    [22]

    Randel W J, Wu F 2006 J. Clim. 19 2094

    [23]

    Haimberger L, Tavolato C, Sperka S 2008 J. Clim. 21 4587

    [24]

    Schmidlin F J, Luers J K, Hoffman P D {1986 NASA Tech. 2637 1

    [25]

    Luers J K 1990 J. Atmos. Ocean. Technol. 7 882

    [26]

    Luers J K, Eskridge R E 1995 J. Appl. Meteor. 34 1241

    [27]

    Ruffieux D, Joss J 2003 J. Atmos. Ocean. Technol. 20 1576

    [28]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 63 230206]

    [29]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 63 144701]

    [30]

    Wang X H, Yi S T, Fu J, Lu X G, He L 2015 Acta Phys. Sin. 64 054706 (in Chinese) [王小虎, 易仕和, 付佳, 陆小革, 何霖 2015 64 054706]

    [31]

    NOAA, NASA, USAF 1976 U. S. Standard Atmosphere (Washington D.C.: U.S. Government Printing office) pp53-63

    [32]

    Gao Y, Liu H B, Wang L, Gu G C 2013 Chin. Opt. 6 570 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2013 中国光学 6 570]

    [33]

    Gao Y, Liu H B, Wang L, Gu G C {2014 Chin. Opt. 7 657 (in Chinese) [高雁, 刘洪波, 王丽, 顾国超 2014 中国光学 7 657]

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究.  , 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [4] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器.  , 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [5] 杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏. 用于气象观测的阵列式温度传感器流体动力学分析与实验研究.  , 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [6] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究.  , 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [7] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [8] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [9] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法.  , 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [10] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究.  , 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [12] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [13] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [14] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析.  , 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [15] 马天鹏, 胡立群, 陈开云. 小波变换在HT-7 Tokamak磁流体动力学振荡动态频谱分析中的应用.  , 2010, 59(10): 7209-7213. doi: 10.7498/aps.59.7209
    [16] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析.  , 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [17] 汪 敏, 胡小方, 伍小平. 同步辐射计算机断层技术衬度误差机理分析.  , 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [18] 于溪凤, 胡火生, 贺礼端, 蒋 政, 刘 祥, 胡壮麒. 电流体动力学技术制备的Sn-Bi纳米超微粉的微观结构特征.  , 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性.  , 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] 谢学纲, 陈式刚, 洪朝生. 超导体流体动力学方程.  , 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
计量
  • 文章访问数:  6142
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map