搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非简谐振动对石墨烯杨氏模量与声子频率的影响

程正富 郑瑞伦

引用本文:
Citation:

非简谐振动对石墨烯杨氏模量与声子频率的影响

程正富, 郑瑞伦

Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene

Cheng Zheng-Fu, Zheng Rui-Lun
PDF
导出引用
  • 在哈里森键联轨道法框架下, 考虑到原子的短程相互作用和原子的非简谐振动, 应用固体物理理论和方法, 得到了石墨烯的力常数、杨氏模量、扭曲模量、泊松系数以及声子频率随温度的变化关系, 探讨了非简谐振动对它们的影响. 结果表明: 1)杨氏模量与声子频率等随温度变化并遵从一定的规律, 其中力常数、杨氏模量、扭曲模量随温度升高而增大, 但变化较小; 声子频率随温度升高而增大但变化较快; 泊松系数随温度升高而较快地减小; 2)石墨烯原子具有沿键长方向的纵振动和垂直键长方向的横振动, 但以纵振动为主, 纵振动的非简谐效应远大于横振动, 横振动的简谐系数0' 和第二非谐系数2' 均小于纵振动的相应值0,2; 比值为0/0' 8.477,2/2' 156; 3)若不考虑非简谐振动项, 则石墨烯的力常数、杨氏模量和扭曲模量、泊松系数、声子频率均为常量, 与实验不符合; 同时考虑到原子的第一、二非简谐振动项后, 它们均随温度升高而变化, 而且温度愈高, 原子振动的非简谐效应愈显著. 本文的结果与文献的实验结果符合较好.
    In the frame of the Harrison bonded-orbital method, the variations of the force constant, the Young modulus, the torsional modulus and the phonon frequency with temperature are given through the relevant theory or method of the solid state physics with considering the non-harmonic effect and the short-range interaction of atoms. Results show that the force constant, the Young modulus, the torsional modulus, the phonon frequency and the Poissons coefficient all vary with temperature. The results show that the first three quantities increase with temperature but not very much; the phonon frequency increases with temperature rapidly; the Poissons coefficient decreases fast with the increase of temperature. There are transverse vibrations along the direction perpendicular to the bond-length direction and the longitudinal vibrations along the bond-length direction, in which the longitudinal vibrations are dominant. The nonharmonic effect of the longitudinal vibration is much larger than that of the transverse vibration. The first and the second non-harmonic coefficient of the transverse vibration are both much less than those of the longitudinal vibration, where 0/0 8.477 and 2/2 156. The above five physical quantities are constant at different temperatures if the first and second nonhamonic effects are omitted, which does not conform to the experimental results. After the first and second nonhamonic effects are considered, they all increase with temperature and results are in good agreement with experimental data. The anharmonic effect increases with temperature.
      通信作者: 郑瑞伦, zhengrui@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574253)和重庆市基础与前沿研究项目(批准号:cstc2015jcyjA40054)资助的课题.
      Corresponding author: Zheng Rui-Lun, zhengrui@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574253) and the Fund for Basic and Advanced Research Program of Chongqing, China (Grant No. cstc2015jcyjA40054).
    [1]

    Novoselov K S, Ceim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Materials Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 63 176801]

    [5]

    Yang Y L, Lu Y 2014 Chin. Phys. B 23 106501

    [6]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Ye C, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 叶聪, 张振华 2015 64 046102]

    [7]

    Zhou P, He D W 2016 Chin. Phys. B 25 017302

    [8]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常 旭 2014 63 086102]

    [9]

    Mi C G, Liu G P, Wang J J, Guo X L, Wu S X, Yu J 2014 Acta Phys. Chem. Sin. 30 1230 (in Chinese) [米传国, 刘国平, 王家佳, 郭新立, 吴三械, 于 金 2014 物理化学学报 30 1230]

    [10]

    Davydov S Y, Subinova G Y 2011 Phys. Stat. Sol. 53 608 (in Russian)

    [11]

    Davydov S Y, Subinova G Y 2015 Phys. Stat. Sol. 57 1017 (in Russian)

    [12]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [13]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [14]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [15]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [16]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [17]

    Davydov S Y 2011 Tech. Phys. Lett. 37 42 (in Russian)

    [18]

    Davydov S Y 2012 Phys. Solid State 54 875

    [19]

    Davydov S Y 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [20]

    Zheng R L, Hu X Q 1994 College Physics 13 15 (in Chinese) [郑瑞伦, 胡先权 1994 大学物理 13 15]

    [21]

    Davydov S Yu, Bosledlik O W 2015 Phys. Stat. Sol. 57 819 (in Russian)

    [22]

    Davidov S Yu. 2009 Phys. Stat. Sol. 51 2041 (in Russian)

    [23]

    Solin S A, Ramdas A K 1970 Phys. Rev. B 1 1687

    [24]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: southwest normal university press) pp267-271 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 267-271 页]

    [25]

    Blaksly O L, Proctor D G, Seldin E J, Spence G B, Weng T 1970 J. Appl. Phys. 41 3373

    [26]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406

    [27]

    Lu Q, Arroyo M, Huang R 2009 J. Appl. Phys. 42 102002

    [28]

    Cadelano E C, Palla P L, Giordano S, Colombo L 2009 Phys. Rev. Lett. 102 235502

  • [1]

    Novoselov K S, Ceim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666

    [2]

    Katsnelson M I 2007 Materials Today 10 20

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351

    [4]

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 63 176801]

    [5]

    Yang Y L, Lu Y 2014 Chin. Phys. B 23 106501

    [6]

    Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Ye C, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese) [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 叶聪, 张振华 2015 64 046102]

    [7]

    Zhou P, He D W 2016 Chin. Phys. B 25 017302

    [8]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常 旭 2014 63 086102]

    [9]

    Mi C G, Liu G P, Wang J J, Guo X L, Wu S X, Yu J 2014 Acta Phys. Chem. Sin. 30 1230 (in Chinese) [米传国, 刘国平, 王家佳, 郭新立, 吴三械, 于 金 2014 物理化学学报 30 1230]

    [10]

    Davydov S Y, Subinova G Y 2011 Phys. Stat. Sol. 53 608 (in Russian)

    [11]

    Davydov S Y, Subinova G Y 2015 Phys. Stat. Sol. 57 1017 (in Russian)

    [12]

    Mounet N, Marzari N 2005 Phys. Rev. B 71 205214

    [13]

    Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808

    [14]

    Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429

    [15]

    Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501

    [16]

    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562

    [17]

    Davydov S Y 2011 Tech. Phys. Lett. 37 42 (in Russian)

    [18]

    Davydov S Y 2012 Phys. Solid State 54 875

    [19]

    Davydov S Y 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [20]

    Zheng R L, Hu X Q 1994 College Physics 13 15 (in Chinese) [郑瑞伦, 胡先权 1994 大学物理 13 15]

    [21]

    Davydov S Yu, Bosledlik O W 2015 Phys. Stat. Sol. 57 819 (in Russian)

    [22]

    Davidov S Yu. 2009 Phys. Stat. Sol. 51 2041 (in Russian)

    [23]

    Solin S A, Ramdas A K 1970 Phys. Rev. B 1 1687

    [24]

    Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: southwest normal university press) pp267-271 (in Chinese) [郑瑞伦, 胡先权 1996 固体理论及其应用 (重庆: 西南师范大学出版社) 第 267-271 页]

    [25]

    Blaksly O L, Proctor D G, Seldin E J, Spence G B, Weng T 1970 J. Appl. Phys. 41 3373

    [26]

    Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406

    [27]

    Lu Q, Arroyo M, Huang R 2009 J. Appl. Phys. 42 102002

    [28]

    Cadelano E C, Palla P L, Giordano S, Colombo L 2009 Phys. Rev. Lett. 102 235502

  • [1] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符.  , 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐.  , 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [3] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [4] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应.  , 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管.  , 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [8] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究.  , 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [9] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律.  , 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [10] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻.  , 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [11] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦.  , 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [12] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [13] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用.  , 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [14] 吕焕玲, 王静. 掺杂单晶硅纳米薄膜杨氏模量的多尺度理论模型.  , 2015, 64(23): 236103. doi: 10.7498/aps.64.236103
    [15] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模.  , 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究.  , 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应.  , 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [18] 袁剑辉, 袁晓博. 单壁碳纳米管弹性性质的羟基接枝效应.  , 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [19] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究.  , 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [20] 袁剑辉, 程玉民. 单壁碳纳米管杨氏模量的掺杂效应.  , 2007, 56(8): 4810-4816. doi: 10.7498/aps.56.4810
计量
  • 文章访问数:  7842
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 修回日期:  2016-02-19
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map