搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的光子多普勒速度频谱分析方法

孙海权 王裴 陈大伟 马东军

引用本文:
Citation:

一种新的光子多普勒速度频谱分析方法

孙海权, 王裴, 陈大伟, 马东军

A new method to analyze the velocity spectrograms of photonic Doppler velocimetry

Sun Hai-Quan, Wang Pei, Chen Da-Wei, Ma Dong-Jun
PDF
导出引用
  • 光子多普勒速度计可给出飞层表面某一速度带内颗粒群速度随时间演化的频谱数据, 在冲击动力学实验尤其是微喷射及其混合研究中得到广泛应用. 本文提出一种新的光子多普勒频谱数据分析方法, 可推断出混合区厚度变化和前端等效颗粒尺度. 利用该方法, 对一些典型状态下喷射混合速度频谱开展分析, 获得了不同冲击压力、气体条件下颗粒度数据, 证实了气体环境下喷射颗粒的气动破碎现象, 以及破碎后尺度与初始条件的依赖性, 为喷射混合物理规律研究提供了重要依据.
    Ejecta mixing takes place at the interface between metal and gas under shock loading, i.e., the transport process of ejecta from metal surface happens in gas. Ejecta production and transport processes in gas are the focuses and key problems of shock wave physics at present. So far, extensive investigations have been devoted mainly to the ejecta formation from metal surface under shock-loaded conditions, and many experimental measurement techniques have been developed, such as the Asay foil, high-speed camera and holography technique. As a newly developed instrument, photon Doppler velocitymetry (PDV) which allows the simultaneous detection of velocities of multiple particles has been widely used in the dynamic impact areas, especially in micro-jetting and ejecta mixing experiments. Although PDV spectrogram includes abundant information about ejecta particles, it seems to be too hard to obtain the particle velocity history, which embarrasses the analysis and application of PDV spectrogram. In this paper, the equation of particle motion including the effects of aerodynamic damping force, pressure gradient force, and additional mass force is established, and the analytical solutions of the particle position and velocity are derived in the conditions of planar constant flow, constant flow, and constant acceleration flow. According to the analytical solutions, the characteristics of particle movement are analyzed. A simplified formulation of the relaxation time of the particle velocity, which reflects the particle decelerated speed, is given. And it is found that the relaxation time is proportional to the four-thirds power of particle diameter. Based on the characteristics of particle motion in the planar constant flow, a new method is proposed to analyze the spectrogram of PDV. The fastest velocity of particle in the mixing zone is obtained by extracting the upper part of PDV spectrogram. By integrating the fastest velocity, the time evolution of the head of mixing zone is deduced approximately. The thickness of the mixing zone can be obtained by subtracting the free surface position from the head of mixing zone. The relaxation time of particle velocity is inferred by the exponential fitting of the fastest velocity based on the motion equation of the particle in the planar constant flow. Furthermore, the equivalent diameter of the mixing zone head can also be obtained through the relaxation time. Based on the above methods, the spectrograms of various ejection mixing experiments under different shock-loaded conditions and gas environments are analyzed. The time evolutions of the mixing zone and equivalent diameter are presented, and the effects of shock loading strength and post-shock gas temperature on the mixing zone are analyzed. It is found that the deduced equivalent diameter in gas is smaller than that in vacuum, validating the pneumatic breakup of liquid metal particles in gas.
      通信作者: 王裴, wangpei@iapcm.ac.cn
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2015B0101021,2015B0201043)、计算物理重点实验室基金(批准号:9140C690103150C69302)和国家自然科学基金(批准号:U1530261)资助的课题.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2015B0201043), the Foundation of State Key Laboratory of Computational Physics, China (Grant No. 9140C690103150C69302), and the National Natural Science Foundation of China (Grant No. U1530261).
    [1]

    Ogorodnikov V A, Mikhailov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 J. Exp. Theor. Phys. 109 530

    [2]

    Or D M, Hammerberg J M, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [3]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83177

    [4]

    He A M, Wang P, Shao J L, Duan S Q 2014 Chin. Phys. B 23 047102

    [5]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [6]

    Elias P, Chapron P, Mondot M 1989 Shock Compression of Condensed Matter Albuquerque, New Mexico, August 14-17, 1989 p783

    [7]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [8]

    Prudhomme G, Mercier P, Berthe L, Bnier J, Frugier P A 2014 J. Phys. Conf. Ser. 500 142022

    [9]

    Buttler W T, Or D M, Dimonte G, Morris C, Terrones G, Bainbridge J R, Hogan G E, Hollander B, Holtkamp D, Kwiatkowski K, Marr-Lyon M, Mariam F, Merrill F E, Nedrow P, Saunders A, Schwartz C L, Stone B, Tupa D, Vogan-Mcneil W S 2009 Report LA-UR-10-00739

    [10]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴强 2015 64 124701]

    [11]

    Mercier P, Bnier J, Frugier P A, Contencin G, Veaux J, Lauriot-Basseuil S, Debruyne M 2009 Proc. SPIE 7126 7126O

    [12]

    Prudhomme G, Mercier P, Berthe L 2014 J. Phys. Conf. Ser. 500 142027

    [13]

    Fedorov A V, Mikhailov A L, Finyushin S A, Nazarov D V, Chudakov E A, Kalashnikov D A, Butusov E I 2013 Report Study of lead behavior features at shock loading and further unloading, Biennial Intl. Conference of the APS Topical Group on Shock Compression of Condensed Mater-2013

    [14]

    Fang D Y 1988 Two Phase Flow Mechanics (Changsha: Science and Technology of National Defense Publisher) pp82-84 (in Chinese) [方丁酉 1988 两相流动力学(长沙: 国防科技大学出版社)第82-84页]

    [15]

    Sorenson D S, Pazuchanics P, Johnson R P, Malone R M, Kaufman M I, Tibbitts A, Tunnell T, Marks D, Capelle G A, Grover M, Marshall B, Stevens G D, Turley W D, Lalone B 2014 Report LA-UR-14-24722

  • [1]

    Ogorodnikov V A, Mikhailov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 J. Exp. Theor. Phys. 109 530

    [2]

    Or D M, Hammerberg J M, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [3]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Comput. Fluids 83177

    [4]

    He A M, Wang P, Shao J L, Duan S Q 2014 Chin. Phys. B 23 047102

    [5]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [6]

    Elias P, Chapron P, Mondot M 1989 Shock Compression of Condensed Matter Albuquerque, New Mexico, August 14-17, 1989 p783

    [7]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [8]

    Prudhomme G, Mercier P, Berthe L, Bnier J, Frugier P A 2014 J. Phys. Conf. Ser. 500 142022

    [9]

    Buttler W T, Or D M, Dimonte G, Morris C, Terrones G, Bainbridge J R, Hogan G E, Hollander B, Holtkamp D, Kwiatkowski K, Marr-Lyon M, Mariam F, Merrill F E, Nedrow P, Saunders A, Schwartz C L, Stone B, Tupa D, Vogan-Mcneil W S 2009 Report LA-UR-10-00739

    [10]

    Zhao X W, Li X Z, Wang X J, Song P, Zhang H Z, Wu Q 2015 Acta Phys. Sin. 64 124701 (in Chinese) [赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴强 2015 64 124701]

    [11]

    Mercier P, Bnier J, Frugier P A, Contencin G, Veaux J, Lauriot-Basseuil S, Debruyne M 2009 Proc. SPIE 7126 7126O

    [12]

    Prudhomme G, Mercier P, Berthe L 2014 J. Phys. Conf. Ser. 500 142027

    [13]

    Fedorov A V, Mikhailov A L, Finyushin S A, Nazarov D V, Chudakov E A, Kalashnikov D A, Butusov E I 2013 Report Study of lead behavior features at shock loading and further unloading, Biennial Intl. Conference of the APS Topical Group on Shock Compression of Condensed Mater-2013

    [14]

    Fang D Y 1988 Two Phase Flow Mechanics (Changsha: Science and Technology of National Defense Publisher) pp82-84 (in Chinese) [方丁酉 1988 两相流动力学(长沙: 国防科技大学出版社)第82-84页]

    [15]

    Sorenson D S, Pazuchanics P, Johnson R P, Malone R M, Kaufman M I, Tibbitts A, Tunnell T, Marks D, Capelle G A, Grover M, Marshall B, Stevens G D, Turley W D, Lalone B 2014 Report LA-UR-14-24722

  • [1] 郝歌扬, 杨钰城, 赵荣娟, 吕小鹏, 杨雅涵, 吴国俊. 基于光子多普勒技术的高超风洞驱动器速度历程测量.  , 2022, 71(23): 234208. doi: 10.7498/aps.71.20221234
    [2] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析.  , 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [3] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演.  , 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [4] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [5] 辛建婷, 赵永强, 储根柏, 席涛, 税敏, 范伟, 何卫华, 谷渝秋. 强激光加载下锡材料微喷颗粒与气体混合回收实验研究及颗粒度分析.  , 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [6] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性.  , 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [7] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [8] 郑仕链, 杨小牛. 用于认知无线电协作频谱感知的混合蛙跳算法群体初始化技术.  , 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [9] 张克声, 王殊, 朱明, 胡轶, 贾雅琼. 混合气体声复合弛豫频谱的解析模型.  , 2012, 61(17): 174301. doi: 10.7498/aps.61.174301
    [10] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究.  , 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [11] 郑仕链, 楼才义, 杨小牛. 基于改进混合蛙跳算法的认知无线电协作频谱感知.  , 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
    [12] 高继华, 谢玲玲, 彭建华. 利用速度反馈方法控制时空混沌.  , 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [13] 李红星, 陶春辉, 周建平, 邓居智, 邓显明, 方根显. 非胶结含水合物沉积物修正等效介质速度模型及其地震波场特征研究.  , 2009, 58(11): 8083-8093. doi: 10.7498/aps.58.8083
    [14] 肖瑞杰, 孔令江, 刘慕仁. 车辆的长度和速度对单车道混合交通流的影响.  , 2007, 56(2): 740-746. doi: 10.7498/aps.56.740
    [15] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用.  , 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步.  , 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 薛 郁. 随机计及相对速度的交通流跟驰模型.  , 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
    [18] 鲍德松, 张训生, 徐光磊, 潘正权, 唐孝威, 陆坤权. 平面颗粒流的瓶颈效应及其与速度的关系.  , 2003, 52(2): 401-404. doi: 10.7498/aps.52.401
    [19] 洪晶, 叶以正. 硅中位错运动速度.  , 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [20] 朱启明. 速度相关势对氘核磁矩的校正.  , 1964, 20(7): 682-684. doi: 10.7498/aps.20.682
计量
  • 文章访问数:  6123
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-02-02
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map