-
Ni-Mn-In是一种新型的磁控形状记忆合金, 它通过磁场诱导逆马氏体相变实现形状记忆效应. 实验中常围绕化学计量比Ni2MnIn合金进行成分调整, 以获得适宜的马氏体相变温度与居里温度, 在这个过程中必然会产生多种点缺陷. 本文使用量子力学计算软件包VASP, 在密度泛函理论的框架下通过第一原理计算, 系统地研究了非化学计量比Ni-X-In(X=Mn, Fe 和Co)合金的缺陷形成能和磁性能. 反位缺陷中, In和Ni在X亚晶格的反位缺陷(InX和NiX)的形成能最低, Ni和X反位于Y的亚晶格(NiY和XY)得到较高的形成能. 因此, In原子可以稳定立方母相的结构, 而X原子对母相结构稳定性的影响则相反; 空位缺陷中最高的形成能出现在In空位缺陷, 再次肯定了In原子对稳定母相结构的作用. 此外, 详细研究了点缺陷周围原子的磁性能以及电荷分布. 本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义.Ferromagnetic shape memory alloys (FSMAs) have received much attention as high performance sensor and actuator materials, since a large magnetic-field-induced strain by the rearrangement of twin variants in the martensitic phase was reported. Up to now, several FSMAs including Ni-Mn-Ga, Ni-Fe-Ga, Co-Ni-Ga, Ni-Mn-Al systems have been studied. Vast amount of knowledge accumulated at the properties of Ni-Mn-Ga Heusler alloys in the past decade can foresee the possibility of employing these alloys in device applications. However, the actuation output stress level of the Ni-Mn-Ga alloy is only less than 5 MPa, which represents a shortcoming of this alloy system. Recently, an unusual type of FSMAs Ni-Co-Mn-In Heusler alloy has been experimentally investigated. It shows magnetic-field-induced reverse martensitic transition (MFIRT), making it more attractive for practical application as magnetically driven actuator because it possesses a magnetostress level on the order of tens of MPa. An almost perfect shape memory effect associated with this phase transition is induced by a magnetic field and is called the metamagnetic shape memory effect. NiMnIn is the basic ternary alloy system of the NiMnInCo alloy, and possesses the same metamagnetic shape memory effect. Moreover, large magnetoresistance, large entropy change that generates giant reverse magnetocaloric effects (MCEs), giant Hall effect have been discovered in Ni-Mn-In alloys. Composition adjustment must be carried out around stoichiometric Ni2MnIn in order to obtain the appropriate martensitic transformation temperature and Curie temperature. Therefore, a variety of point defects would be generated in this process. In this paper, the defect formation energy and magnetic properties of the off-stoichiometric Ni-X-In (X= Mn, Fe and Co) alloys are systematically investigated by the first-principle calculations within the framework of the density functional theory through using the Vienna ab initio software package. The In and Ni antisites at the site of the X sublattice (InX and NiX) have the relatively low formation energies. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site (s) of the deficient one (s), except for In-rich Ni-deficient composition. In the latter case, the defect pair (InX+XNi) is energetically more favorable. The formation energy of Ni vacancy is the lowest and that of In vacancy is the highest in the vacancy-type defects. It is confirmed that the In constituent is dominant for the stability of the parent phase. The value of the Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The smaller the distance, the larger the Ni magnetic moment will be. For the anti-site type point defect, when the extra X atom occupies a Ni site, most of the free electrons gather around the extra X atom; while the extra X occupies an In position, the charges are regularly distributed between Ni and extra-X atoms. Moreover, with the increase of the X atomic number, the number of the valence electrons increases, and the bonding strength between the extra X and its neighboring Ni is also enhanced. The results are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.
-
Keywords:
- magnetic shape memory alloys /
- first-principles calculations /
- defect formation energy /
- magnetic properties
[1] Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966
[2] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957
[3] Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504
[4] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503
[5] Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]
[6] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507
[7] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503
[8] Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503
[9] Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25
[10] Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507
[11] Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506
[12] Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408
[13] Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413
[14] Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830
[15] Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407
[16] Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113
[17] Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903
[18] Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258
[19] Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901
[20] Hafner J 2000 Acta Mater. 48 71
[21] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[22] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245
[25] Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244
[26] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[27] Raulot J M, Domain C 2005 Phys. Rev. B 71 035203
[28] Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904
-
[1] Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966
[2] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957
[3] Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 Chin. Phys. B 23 037504
[4] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q, Wang D H, Du Y W 2010 Chin. Phys. B 19 117503
[5] Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]
[6] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507
[7] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H 2006 Appl. Phys. Lett. 89 162503
[8] Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503
[9] Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25
[10] Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507
[11] Li B, Ren W J, Zhang Q, L X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506
[12] Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408
[13] Krenke T, Acet M, Wassermann E F, Moya X, Maosa L, Planes A 2006 Phys. Rev. B 73 174413
[14] Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830
[15] Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407
[16] Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113
[17] Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903
[18] Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481-482 258
[19] Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901
[20] Hafner J 2000 Acta Mater. 48 71
[21] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[22] Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245
[25] Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244
[26] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[27] Raulot J M, Domain C 2005 Phys. Rev. B 71 035203
[28] Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904
计量
- 文章访问数: 6513
- PDF下载量: 336
- 被引次数: 0