-
通过棱镜耦合激发非对称金属包覆介质波导结构中的TE0导波模式, 利用两束TE0模的干涉从理论上实现了周期可调的亚波长光栅刻写. 分析了TE0模式的色散关系, 刻写亚波长光栅的周期与激发光源、棱镜折射率、光刻胶薄膜厚度及折射率之间的关系. 用有限元方法数值模拟了金属薄膜、光刻胶薄膜和空气多层结构中TE0导模的干涉场分布. 研究发现, 激发光源波长越短, TE0 模干涉刻写的亚波长光栅周期越小; 光刻胶越厚, 刻写的亚波长光栅周期越小; 高折射率光刻胶有利于更小周期亚波长光栅的刻写. 相较于表面等离子体干涉光刻, 基于TE0 模的干涉可在厚光刻胶条件下通过改变激发光源、棱镜折射率、光刻胶材料折射率、特别是光刻胶薄膜的厚度等多种方式实现对亚波长光栅周期的有效调控.Sub-wavelength grating is a critical element in micro and nano-photonics. So its fabrication and application have attracted a great deal of research attention. While the existing lithography technologies of sub-wavelength grating fabrication have some insufficient points, such as high cost, low output, technical complexity, or difficult to change the period of the sub-wavelength grating. In this paper, an adjustable period and large area sub-wavelength grating with low cost and maskless is proposed and theoretically realized. The sub-wavelength grating is inscribed by the interference between two TE0 waveguide modes, where the TE0 waveguide mode is existent in an asymmetric metal-cladding dielectric waveguide structure excited by the prism coupling method. The dispersion curve of TE0 waveguide mode, the relationship between the period of the sub-wavelength grating and the exciting light source, the refractive index of the prism and the photoresist, especially the thickness of the photoresist are theoretically analyzed in detail. The distribution of the interference optical field of TE0 waveguide mode in the multilayer structure including metal film, photoresist and air layer is numerically simulated using the finite element method. The shorter the exciting light wavelength with the identical photoresist condition, the smaller the period of sub-wavelength grating inscribed by TE0 waveguide modes interference lithography is. For further studying the influences of refractive index and thickness of photoresist and the refractive index of the prism on the period of sub-wavelength grating, the exciting light with 442 nm wavelength and the Ag matel film are used. The period of sub-wavelength grating is smaller with thicker photoresist film, when the refractive indexes of photoresist and prism are the same. The larger refractive index of photoresist is beneficial to inscribing the sub-wavelength grating with smaller period when the refractive index of prism and the thickness of photoresist are identical. The prism with higher refractive index can provide wave vector-matching condition with lager propagation constant, and can inscribe sub-wavelength grating with smaller period. Compared with surface plasmons interference lithography which needs the thicker photoresist film due to the finite penetration depth of SPs, TE0 waveguide modes interference can realize adjustableperiod sub-wavelength grating writing for thicker photoresist condition by changing exciting light source, the refractive index of prism, the refractive index of photoresist and especially the thickness of photoresist. The realization of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography will provide important theoretical support for reducing the fabrication cost of sub-wavelength gratings and broadening the application scope of sub-wavelength grating.
[1] Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898
[2] Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627
[3] Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]
[4] Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286
[5] Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]
[6] Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269
[7] Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11
[8] Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]
[9] Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111
[10] Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989
[11] Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]
[12] Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580
[13] Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006
[14] Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97
[15] Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353
[16] Spille E, Feder R 1977 Top. Appl. Phys. 22 35
[17] Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441
[18] Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565
[19] Luo X, Ishihara T 2004 Opt. Express 12 3055
[20] Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780
[21] Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115
[22] Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206
[23] Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301
[24] Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007
[25] Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107
[26] Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]
[27] Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106
[28] Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103
[29] Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748
[30] Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]
[31] Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]
-
[1] Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898
[2] Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627
[3] Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]
[4] Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286
[5] Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]
[6] Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269
[7] Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11
[8] Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]
[9] Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111
[10] Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989
[11] Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]
[12] Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580
[13] Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006
[14] Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97
[15] Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353
[16] Spille E, Feder R 1977 Top. Appl. Phys. 22 35
[17] Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441
[18] Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565
[19] Luo X, Ishihara T 2004 Opt. Express 12 3055
[20] Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780
[21] Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115
[22] Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206
[23] Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301
[24] Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007
[25] Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107
[26] Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]
[27] Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106
[28] Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103
[29] Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748
[30] Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]
[31] Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]
计量
- 文章访问数: 6637
- PDF下载量: 194
- 被引次数: 0