搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TE0导模干涉刻写周期可调亚波长光栅理论研究

王茹 王向贤 杨华 叶松

引用本文:
Citation:

TE0导模干涉刻写周期可调亚波长光栅理论研究

王茹, 王向贤, 杨华, 叶松

Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography

Wang Ru, Wang Xiang-Xian, Yang Hua, Ye Song
PDF
导出引用
  • 通过棱镜耦合激发非对称金属包覆介质波导结构中的TE0导波模式, 利用两束TE0模的干涉从理论上实现了周期可调的亚波长光栅刻写. 分析了TE0模式的色散关系, 刻写亚波长光栅的周期与激发光源、棱镜折射率、光刻胶薄膜厚度及折射率之间的关系. 用有限元方法数值模拟了金属薄膜、光刻胶薄膜和空气多层结构中TE0导模的干涉场分布. 研究发现, 激发光源波长越短, TE0 模干涉刻写的亚波长光栅周期越小; 光刻胶越厚, 刻写的亚波长光栅周期越小; 高折射率光刻胶有利于更小周期亚波长光栅的刻写. 相较于表面等离子体干涉光刻, 基于TE0 模的干涉可在厚光刻胶条件下通过改变激发光源、棱镜折射率、光刻胶材料折射率、特别是光刻胶薄膜的厚度等多种方式实现对亚波长光栅周期的有效调控.
    Sub-wavelength grating is a critical element in micro and nano-photonics. So its fabrication and application have attracted a great deal of research attention. While the existing lithography technologies of sub-wavelength grating fabrication have some insufficient points, such as high cost, low output, technical complexity, or difficult to change the period of the sub-wavelength grating. In this paper, an adjustable period and large area sub-wavelength grating with low cost and maskless is proposed and theoretically realized. The sub-wavelength grating is inscribed by the interference between two TE0 waveguide modes, where the TE0 waveguide mode is existent in an asymmetric metal-cladding dielectric waveguide structure excited by the prism coupling method. The dispersion curve of TE0 waveguide mode, the relationship between the period of the sub-wavelength grating and the exciting light source, the refractive index of the prism and the photoresist, especially the thickness of the photoresist are theoretically analyzed in detail. The distribution of the interference optical field of TE0 waveguide mode in the multilayer structure including metal film, photoresist and air layer is numerically simulated using the finite element method. The shorter the exciting light wavelength with the identical photoresist condition, the smaller the period of sub-wavelength grating inscribed by TE0 waveguide modes interference lithography is. For further studying the influences of refractive index and thickness of photoresist and the refractive index of the prism on the period of sub-wavelength grating, the exciting light with 442 nm wavelength and the Ag matel film are used. The period of sub-wavelength grating is smaller with thicker photoresist film, when the refractive indexes of photoresist and prism are the same. The larger refractive index of photoresist is beneficial to inscribing the sub-wavelength grating with smaller period when the refractive index of prism and the thickness of photoresist are identical. The prism with higher refractive index can provide wave vector-matching condition with lager propagation constant, and can inscribe sub-wavelength grating with smaller period. Compared with surface plasmons interference lithography which needs the thicker photoresist film due to the finite penetration depth of SPs, TE0 waveguide modes interference can realize adjustableperiod sub-wavelength grating writing for thicker photoresist condition by changing exciting light source, the refractive index of prism, the refractive index of photoresist and especially the thickness of photoresist. The realization of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography will provide important theoretical support for reducing the fabrication cost of sub-wavelength gratings and broadening the application scope of sub-wavelength grating.
      通信作者: 王向贤, wangxx869@126.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CBA01703)、 国家自然科学基金(批准号: 61505074)、兰州理工大学红柳青年教师培养计划(批准号: Q201509)和巢湖学院自然科学基金(批准号: XLZ201201)资助的课题.
      Corresponding author: Wang Xiang-Xian, wangxx869@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 61505074), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509) and the Natural Science Foundation of Chaohu University, China (Grant No. XLZ201201)
    [1]

    Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898

    [2]

    Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627

    [3]

    Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]

    [4]

    Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286

    [5]

    Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]

    [6]

    Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269

    [7]

    Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11

    [8]

    Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]

    [9]

    Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111

    [10]

    Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989

    [11]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [12]

    Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580

    [13]

    Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006

    [14]

    Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97

    [15]

    Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353

    [16]

    Spille E, Feder R 1977 Top. Appl. Phys. 22 35

    [17]

    Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441

    [18]

    Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565

    [19]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [20]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [21]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115

    [22]

    Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206

    [23]

    Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301

    [24]

    Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007

    [25]

    Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107

    [26]

    Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]

    [27]

    Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106

    [28]

    Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103

    [29]

    Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748

    [30]

    Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]

    [31]

    Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]

  • [1]

    Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898

    [2]

    Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627

    [3]

    Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]

    [4]

    Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286

    [5]

    Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]

    [6]

    Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269

    [7]

    Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11

    [8]

    Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]

    [9]

    Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111

    [10]

    Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989

    [11]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [12]

    Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580

    [13]

    Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006

    [14]

    Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97

    [15]

    Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353

    [16]

    Spille E, Feder R 1977 Top. Appl. Phys. 22 35

    [17]

    Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441

    [18]

    Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565

    [19]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [20]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [21]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115

    [22]

    Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206

    [23]

    Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301

    [24]

    Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007

    [25]

    Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107

    [26]

    Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]

    [27]

    Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106

    [28]

    Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103

    [29]

    Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748

    [30]

    Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]

    [31]

    Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]

  • [1] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器.  , 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元.  , 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强.  , 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [4] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真.  , 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [5] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性.  , 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [6] 季曾超, 陈仕修, 高深, 陈俊, 田微. 真空二极管辐射微波的机理分析.  , 2016, 65(14): 145202. doi: 10.7498/aps.65.145202
    [7] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性.  , 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究.  , 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [9] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [10] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究.  , 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [11] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析.  , 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [12] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究.  , 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [13] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟.  , 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [14] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算.  , 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [15] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究.  , 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [16] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应.  , 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [17] 徐 燕, 胡经国. 平面约束下金属铁磁条中平行抽运微波磁场的非稳定阈值研究.  , 2008, 57(7): 4521-4526. doi: 10.7498/aps.57.4521
    [18] 虞益挺, 苑伟政, 乔大勇, 梁 庆. 一种在线测量微机械薄膜残余应力的新结构.  , 2007, 56(10): 5691-5697. doi: 10.7498/aps.56.5691
    [19] 张绘蓝, 张光勇, 王 程, 刘时雄, 刘劲松. 全息明孤子的波导特性.  , 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
    [20] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究.  , 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
计量
  • 文章访问数:  6637
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-01-07
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map