搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙尘大气电磁波多重散射及衰减

杨瑞科 李茜茜 姚荣辉

引用本文:
Citation:

沙尘大气电磁波多重散射及衰减

杨瑞科, 李茜茜, 姚荣辉

Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere

Yang Rui-Ke, Li Qian-Qian, Yao Rong-Hui
PDF
导出引用
  • 为了使干旱沙漠地区的电子系统能够全天候的工作, 必须开展沙尘大气的电磁波多重散射及衰减特性研究. 根据Mie理论、沙尘大气粒子尺寸分布和能见度的关系得到了电磁波沙尘大气传播衰减的计算方法, 计算了不同沙尘大气能见度的37 GHz电磁波的衰减, 与其他经验公式及文献中的实验结果进行比较, 文中方法得到的结果更接近于测量结果. 为了研究较低能见度沙尘暴中电磁波的传播特性, 需研究沙尘大气的多重散射效应. 应用Monte Carlo模拟方法, 在沙尘粒子为干燥和5%水含量时, 模拟了37 GHz和93 GHz电磁波在沙尘大气中传播时考虑多重散射效应的衰减, 并与基于Mie理论的计算结果进行比较, 结果显示, 在37 GHz时, 沙尘大气的多重散射对衰减的影响小, 在93 GHz时多重散射显著, 沙尘大气能见度越低, 多重散射的影响越显著. 粒子水含量增加使电磁波的衰减显著增大, 对多重散射的影响不明显. 因此, 在相同大气能见度下, 沙尘天气越干燥, 多重散射影响越大, 电磁波衰减减小越显著.
    For an electronic system operation under the conditions of all-weather in arid and semiarid areas, the studies of the attenuation and multiple scattering are necessary for electromagnetic wave propagations in sand and dust atmosphere. Based on Mie theory, a method of calculating the attenuations for electromagnetic wave propagation through sand and dust atmosphere is presented in this paper, which relate to the particle size distributions and visibilities for sand and dust atmosphere. The attenuations at 37 GHz are given for various visibilities, and are compared with the results calculated from other formulas and the experimental data from the literature. The attenuations are closer to the experimental results. In order to investigate into electromagnetic wave propagations in lower visibility sand and dust atmosphere, the multiple scattering in sand and dust storms are necessarily analyzed. At 37 and 93 GHz, the extinction cross sections, albedos and asymmetry factors are calculated by Mie theory for various size sand and dust particles. By the Monte Carlo (MC) simulation method, the attenuations for including the multiple scattering effects are calculated under the conditions of dry and 5% water content in sand and dust particles, respectively, and are compared with the results from Mie theory. The results are shown that the difference between the attenuation obtained by Mie and that by MC is small at 37 GHz. The influence of the multiple scattering on attenuation is small and may be ignored at 37 GHz. At 93 GHz, the difference between the attenuation obtained by Mie and that by MC is clear, and the attenuation obtained by using Mc simulation is smaller than that based on Mie theory. The effect of the multiple scattering on attenuation is evident at 93 GHz. The lower the visibility, the more notable the effect on attenuation is. For different sand and dust storms, the particle refractive indexes and the particle size distributions are different. For the sand and dust storms in Tengger desert and the blowing sand and dust atmosphere in north China, the attenuations at 93 GHz are analysed. In Tengger desert, the attenuation and the multiple scattering are larger than in blowing sand and dust atmosphere. The results show that the more the large size particles in sand and dust storms, the stronger the effect multiple scattering on attenuation is. Hence, for stronger sand and dust storms, the attenuation and the effect of multiple scattering become important. With the increase of water content in particle, the imaginary part of refractive index increases, the attenuation greatly increases, and the effect of the multiple scattering on attenuation is weakly varied. The analyses show that the attenuations for electromagnetic wave propagation in arid sand and dust atmosphere are smaller than in moisture sand and dust atmosphere under the condition of the same visibility.
      通信作者: 杨瑞科, yrk1868@163.com
    • 基金项目: 电磁环境特性及模化技术国防科技重点实验室项目资助的课题.
      Corresponding author: Yang Rui-Ke, yrk1868@163.com
    • Funds: Project supported by the National Key Laboratory of Electromagnetic Environment.
    [1]

    Chu T S 1979 Bell Syst. Tech. J. 58 549

    [2]

    Ahmed A S, Ali A A, Alhaider M A 1987 IEEE Trans. Geosci. Remote Sens. GH-25 593

    [3]

    Ahmed A S 1987 IEE Proc. 134 55

    [4]

    Sihvola A H, Kong J A 1988 IEEE Trans. Geosci. Remote Sens. 26 420

    [5]

    Zhou W, Zhou D F, Hou D T, Hu T, Weng L W 2005 High Power Laser and Partical Beams 17 1259 (in Chinese) [周旺, 周东方, 侯德亭, 胡涛, 翁凌雯 2005 强激光与粒子束 17 第1259页]

    [6]

    Dong Q S 1997 Chin. J. Radio Sci. 12 15 (in Chinese) [董庆生 1997 电波科学学报 12 15]

    [7]

    Yang R K, Jian D J, Yao R H 2007 J. Xidian Univ. 34 953 (in Chinese) [杨瑞科, 鉴佃军, 姚荣辉 2007 西安电子科技大学学报 34 953]

    [8]

    Yang R K, Li L, Ma H H 2013 Indian J. Radio and Space Phys. 42 404

    [9]

    Yang R K, Ma C L, Li L C 2007 Chin. J. Lasers 34 1393 (in Chinese) [杨瑞科, 马春林, 李良超 2007 中国激光 34 第1393页]

    [10]

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214 (in Chinese) [王红霞, 竹有章, 田涛, 李爱军 2013 62 024214]

    [11]

    Wang H H, Sun X M 2012 Chin. Phys. B 21 054204

    [12]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas and Wireless Propagation Letters 10 469

    [13]

    Alhuwaimel S, Mishra A, Inggs M 2013 Proceeding of 2012 International Conference on Electromagnetics in Advanced Application (ICEAA) Cape Town, South Africa, IEEE Sept. 2-7, 2012 p1096

    [14]

    Dong Q F, Li Y L, Xu J D, Zhang H, Wang M J 2013 IEEE Trans. Anten. Propag. 61 910

    [15]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张俊, 范之国, 高隽 2014 63 114201]

    [16]

    Islam M R, Elsheikh E, Ismail A F, Bashir S O, Chebil J 2014 Fifth International Conference on Computer and Communication Engineering Kuala Lumpur, Malaysia, Sept. 23-25, 2014 p224

    [17]

    Oguchi T 1983 Proc. IEEE 71 1029

    [18]

    Ansari A J, Evans B G 1982 IEE Proc. 129 315

    [19]

    Chen H Y, Ku C C 2012 IEEE Trans. Anten. Propag. 60 2951

    [20]

    Goldhirsh J 1982 IEEE Trans. Anten. Propag. 30 1121

    [21]

    Elabdin Z E O, Islam M R, Khalifa O O, Abd-EI-Raouf H E 2009 PIER M 6 139

    [22]

    Alhaider M A, Ali A A 1989 Sixth International Conference on Antennas and Propagation Coventry United Kingdom, April 4-7, 1989 p268

    [23]

    Nie Z P, Fang D G 2009 Modeling of Electromagnetic Scattering Characteristics for Target and Environment (first edition) pp323-327 (Beijing: Defense Industrial Press) (in Chinese) [聂在平, 方大纲 2009 目标与环境电磁散射特性建模(第一版) (北京:国防工业出版社) 第 323-372 页]

  • [1]

    Chu T S 1979 Bell Syst. Tech. J. 58 549

    [2]

    Ahmed A S, Ali A A, Alhaider M A 1987 IEEE Trans. Geosci. Remote Sens. GH-25 593

    [3]

    Ahmed A S 1987 IEE Proc. 134 55

    [4]

    Sihvola A H, Kong J A 1988 IEEE Trans. Geosci. Remote Sens. 26 420

    [5]

    Zhou W, Zhou D F, Hou D T, Hu T, Weng L W 2005 High Power Laser and Partical Beams 17 1259 (in Chinese) [周旺, 周东方, 侯德亭, 胡涛, 翁凌雯 2005 强激光与粒子束 17 第1259页]

    [6]

    Dong Q S 1997 Chin. J. Radio Sci. 12 15 (in Chinese) [董庆生 1997 电波科学学报 12 15]

    [7]

    Yang R K, Jian D J, Yao R H 2007 J. Xidian Univ. 34 953 (in Chinese) [杨瑞科, 鉴佃军, 姚荣辉 2007 西安电子科技大学学报 34 953]

    [8]

    Yang R K, Li L, Ma H H 2013 Indian J. Radio and Space Phys. 42 404

    [9]

    Yang R K, Ma C L, Li L C 2007 Chin. J. Lasers 34 1393 (in Chinese) [杨瑞科, 马春林, 李良超 2007 中国激光 34 第1393页]

    [10]

    Wang H X, Zhu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214 (in Chinese) [王红霞, 竹有章, 田涛, 李爱军 2013 62 024214]

    [11]

    Wang H H, Sun X M 2012 Chin. Phys. B 21 054204

    [12]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas and Wireless Propagation Letters 10 469

    [13]

    Alhuwaimel S, Mishra A, Inggs M 2013 Proceeding of 2012 International Conference on Electromagnetics in Advanced Application (ICEAA) Cape Town, South Africa, IEEE Sept. 2-7, 2012 p1096

    [14]

    Dong Q F, Li Y L, Xu J D, Zhang H, Wang M J 2013 IEEE Trans. Anten. Propag. 61 910

    [15]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张俊, 范之国, 高隽 2014 63 114201]

    [16]

    Islam M R, Elsheikh E, Ismail A F, Bashir S O, Chebil J 2014 Fifth International Conference on Computer and Communication Engineering Kuala Lumpur, Malaysia, Sept. 23-25, 2014 p224

    [17]

    Oguchi T 1983 Proc. IEEE 71 1029

    [18]

    Ansari A J, Evans B G 1982 IEE Proc. 129 315

    [19]

    Chen H Y, Ku C C 2012 IEEE Trans. Anten. Propag. 60 2951

    [20]

    Goldhirsh J 1982 IEEE Trans. Anten. Propag. 30 1121

    [21]

    Elabdin Z E O, Islam M R, Khalifa O O, Abd-EI-Raouf H E 2009 PIER M 6 139

    [22]

    Alhaider M A, Ali A A 1989 Sixth International Conference on Antennas and Propagation Coventry United Kingdom, April 4-7, 1989 p268

    [23]

    Nie Z P, Fang D G 2009 Modeling of Electromagnetic Scattering Characteristics for Target and Environment (first edition) pp323-327 (Beijing: Defense Industrial Press) (in Chinese) [聂在平, 方大纲 2009 目标与环境电磁散射特性建模(第一版) (北京:国防工业出版社) 第 323-372 页]

  • [1] 袁金健, 顾民, 黄润生. 运动界面的电磁波相位匹配.  , 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] 杨瑞科, 王甲乐. 带电沙尘大气对微波量子照明雷达性能的影响.  , 2024, 73(17): 170302. doi: 10.7498/aps.73.20240802
    [3] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究.  , 2018, 67(2): 025201. doi: 10.7498/aps.67.20170845
    [5] 管义钧, 孙宏祥, 袁寿其, 葛勇, 夏建平. 近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性.  , 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [6] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [7] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究.  , 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [8] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性.  , 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [9] 张景川, 袁萍, 欧阳玉花. 雷声在大气中传播的吸收衰减特性研究.  , 2010, 59(11): 8287-8392. doi: 10.7498/aps.59.8287
    [10] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用.  , 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [11] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究.  , 2009, 58(7): 4793-4798. doi: 10.7498/aps.58.4793
    [12] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质.  , 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [13] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真.  , 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [14] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究.  , 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [15] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究.  , 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [16] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究.  , 2006, 55(5): 2352-2356. doi: 10.7498/aps.55.2352
    [17] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解.  , 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [18] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析.  , 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
    [19] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减.  , 2004, 53(4): 1110-1115. doi: 10.7498/aps.53.1110
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性.  , 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  7988
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map