-
介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素. 薄片状介质试样的表面电荷密度与表面电位近似呈线性关系, 因此常通过表面电位衰减行为研究表面电荷的衰减特性. 基于电晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程, 建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为, 得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率10-14 S m-1)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系. 相对介电常数越大, 表面电位的衰减速度越慢; 环氧树脂相对介电常数典型范围(34)内, 表面电位衰减时间常数由1720 s增大到2540 s, 两者呈线性关系. 体电导率越大, 表面电位的衰减速度越快; 环氧树脂体电导率典型范围(10-1510-13 S m-1)内, 表面电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系.Surface charge accumulation and decay behaviors of dielectric materials are the key factors restricting the development of high voltage direct current power equipment. For flat samples, the density of surface charges deposited by corona can be regarded as a linear change with the surface potential. For this reason, the behavior of surface charge decay can be directly related to that of surface potential. According to the corona charging process, the surface charge deposition and detrapping process, as well as the charge transport process in the bulk, we may establish a physical model dynamic response to the surface potential. Influences of grid voltage, relative permittivity, and bulk conductivity on the surface potential decay process can be obtained through calculating the surface potential decay behaviors of epoxy resin. The higher the grid voltage, the faster the surface potential decays. At the typical parameter value of epoxy resin (relative permittivity 3.93, bulk conductivity 10-14 S m-1), the normalized decay rate can be fitted by two straight lines in a log-log plot; moreover, the calculated results show a linear variation of power factors with the grid voltage, while the power function shows a relationship between the characteristic time and the grid voltage. The bigger the relative permittivity, the slower the surface potential decays. In the typical parameter area of epoxy resin (relative permittivity 3-4), the surface potential decay time constant increases from 1720 s to 2540 s, showing a linear variation. Also the bigger the bulk conductivity, the faster the surface potential decays. In the typical parameter area of epoxy resin (bulk conductivity 10-15-10-13 S m-1), the surface potential decay time constant decreases from 24760 s to 260 s, showing a power function relationship.
[1] Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77
[2] Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 61 158201]
[3] Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333
[4] Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 64 086801]
[5] Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901
[6] Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627
[7] Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1
[8] Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]
[9] Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15
[10] Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782
[11] Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]
[12] Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529
[13] Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975
[14] Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453
[15] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941
[16] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949
[17] Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958
[18] Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085
[19] Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223
[20] von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155
[21] Chen G 2010 J. Phys. D: Appl. Phys. 43 055405
[22] Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627
[23] Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206
[24] Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]
[25] Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]
[26] Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]
[27] Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]
[28] Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]
[29] Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401]
[30] Cockburn B, Shu C W 1989 Math. Comput. 52 411
[31] Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]
[32] Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]
[33] Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40
[34] Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531
[35] Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793
[36] Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]
[37] Wintle H J 1970 J. Appl. Phys. 41 4004
[38] Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]
[39] Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291
[40] Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284
-
[1] Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77
[2] Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连, 仓俊, 张冶文, 郑飞虎 2012 61 158201]
[3] Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333
[4] Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 64 086801]
[5] Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901
[6] Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627
[7] Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8-11, 2014 p1
[8] Gao Y, Du B X 2012 High Voltage Eng. 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]
[9] Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11m th International Symposium on Electrets Melbourne, Australia, October 1-3, 2002 p15
[10] Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16-19, 1996 p782
[11] Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 High Voltage Eng. 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]
[12] Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529
[13] Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975
[14] Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453
[15] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941
[16] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949
[17] Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958
[18] Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085
[19] Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223
[20] von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155
[21] Chen G 2010 J. Phys. D: Appl. Phys. 43 055405
[22] Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627
[23] Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206
[24] Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]
[25] Xia Z F 2001 Electret (Beijing: Science Press) pp74-78 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第7478页]
[26] Ji Y M, Zhang B, He J L 2014 High Voltage Eng. 40 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术 40 1768]
[27] Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第97-117 页]
[28] Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天津: 天津大学)]
[29] Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 63 209401]
[30] Cockburn B, Shu C W 1989 Math. Comput. 52 411
[31] Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]
[32] Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文 (西安: 西安交通大学)]
[33] Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40
[34] Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10-13, 2012 p531
[35] Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys. 6 793
[36] Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]
[37] Wintle H J 1970 J. Appl. Phys. 41 4004
[38] Gao Y, Du B X 2012 High Voltage Eng. 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]
[39] Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291
[40] Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284
计量
- 文章访问数: 7336
- PDF下载量: 312
- 被引次数: 0