搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光声信号的高铁钢轨表面缺陷检测方法

孙明健 程星振 王艳 章欣 沈毅 冯乃章

引用本文:
Citation:

基于光声信号的高铁钢轨表面缺陷检测方法

孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章

Method for detecting high-speed rail surface defects by photoacoustic signal

Sun Ming-Jian, Cheng Xing-Zhen, Wang Yan, Zhang Xin, Shen Yi, Feng Nai-Zhang
PDF
导出引用
  • 针对传统的基于超声信号的高铁钢轨无损检测方法对于表面微裂纹检测效果不佳的问题, 提出了一种基于光声信号的高铁钢轨表面缺陷检测方法. 首先, 使用有限元及K-wave方法建立了钢轨模型并获得了模拟光声信号; 然后利用时间反演的方法对钢轨表面的光声图像进行了重建, 并研究了不同传感器中心频率对成像结果的影响; 最后设计实验采集了钢轨表面的光声信号并进行了处理和分析. 实验结果表明, 基于光声信号的高铁钢轨表面缺陷检测方法对于表面微裂纹有很好的检测效果, 该方法在钢轨探伤领域有较大的可行性及发展潜力.
    Railway plays a major role in our daily life and national economy. In recent years, people payed much more attention to the safety operation of the high-speed train. In fact, the rail cracks originate from surface micro cracks will directly affect the safety of high-speed train. Therefore, it is vital to detect the rail surface micro cracks. Numerous nondestructive testing methods have been developed and applied in the detection of high speed rail cracks, such as magnetic particle testing, eddy current testing, and ultrasonic testing, etc. However, all the above conventional methods could only achieve crack information from the point of one-dimensional signal but not effective for the detection of surface micro cracks. A surface defect detection method based on photoacoustic (PA) signal from high speed rail is proposed soas to detect the surface crack more exactly and visually. Simulation and experiments are designed to validate the proposed method. Firstly, three models of high-speed rail with transverse crack, oblique crack, and scale stripping are established respectively. Meanwhile, the PA effect is simulated by finite element analysis and K-wave. Then, PA image of the rail surface is reconstructed by time inversion reconstruction algorithm, and some parameters, such as the center frequency of ultrasonic sensor and the laser power are also confirmed in further simulation. Subsequently, an experimental platform is established to collect the actual PA signal from a rail surface and to reconstruct PA images of the rail surface and shallow layer. The crack appearing in PA images are clear enough to show the receive crack information, such as sizes, propagating directions, and locations, which can be used to evaluate the rail states and decide processing scheme. It is proved that clear images of rail surface and shallow layer can be received by the detecting method of high-speed rail surface defects based on photoacoustic signal, and the surface cracks can be detected effectively.
      通信作者: 冯乃章, fengnz@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 61201307, 61371045, 61171197)、中央高校基本科研业务费专项资金(批准号: HIT. NSRIF. 2013132)、山东省重点研发计划(批准号: 2015GGX103016)和中国博士后科学基金面上项目(批准号:2015M571413)资助的课题.
      Corresponding author: Feng Nai-Zhang, fengnz@yeah.net
    • Funds: Progect supported by the National Natural Science Foundation of China (Grant Nos. 61201307, 61371045, 61171197), the Fundamental Research Funds for the Central Universities of China (Grant No. HIT. NSRIF. 2013132), Science and Technology Development Plan Project of Shandong Province, China (Grant No. 2015GGX103016), and the China Postdoctoral Science Foundation (Grant No. 2015M571413).
    [1]

    Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]

    [2]

    Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]

    [3]

    Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546

    [4]

    Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048

    [5]

    Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80

    [6]

    Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141

    [7]

    Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54

    [8]

    Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819

    [9]

    Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1

    [10]

    Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001

    [11]

    Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]

    [12]

    Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]

    [13]

    Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]

    [14]

    Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]

    [15]

    Kenderian S, Djordjevic B 2006 Insight 48 336

    [16]

    Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8

    [17]

    Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48

    [18]

    Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896

    [19]

    Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783

    [20]

    Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473

    [21]

    Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713

    [22]

    Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]

    [23]

    Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]

    [24]

    Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]

  • [1]

    Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]

    [2]

    Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]

    [3]

    Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546

    [4]

    Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048

    [5]

    Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80

    [6]

    Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141

    [7]

    Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54

    [8]

    Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819

    [9]

    Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1

    [10]

    Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001

    [11]

    Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]

    [12]

    Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]

    [13]

    Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]

    [14]

    Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]

    [15]

    Kenderian S, Djordjevic B 2006 Insight 48 336

    [16]

    Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8

    [17]

    Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48

    [18]

    Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896

    [19]

    Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783

    [20]

    Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473

    [21]

    Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713

    [22]

    Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]

    [23]

    Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]

    [24]

    Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]

  • [1] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析.  , 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [2] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型.  , 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用.  , 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究.  , 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法.  , 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [6] 彭东青, 谢文明, 吴淑莲, 唐嘉铭, 李志芳, 李晖. 基于柱弥散光源体内辐照的前列腺扫描光声成像仿体实验.  , 2015, 64(20): 207801. doi: 10.7498/aps.64.207801
    [7] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用.  , 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [8] 张立广, 屈惠明. 红外无损探测中多宗量多热源反演问题的研究.  , 2015, 64(10): 108104. doi: 10.7498/aps.64.108104
    [9] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [10] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [11] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测.  , 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [12] 赵寰宇, 何存富, 吴斌, 汪越胜. 二维正方晶格多点缺陷声子晶体实验研究.  , 2013, 62(13): 134301. doi: 10.7498/aps.62.134301
    [13] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术.  , 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [14] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究.  , 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [15] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [16] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像.  , 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [17] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术.  , 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [18] 师绍猛, 陈荣昌, 薛艳玲, 任玉琦, 杜国浩, 邓 彪, 谢红兰, 肖体乔. 强吸收介质内部低Z材料结构的X射线显微成像研究.  , 2008, 57(10): 6319-6328. doi: 10.7498/aps.57.6319
    [19] 向良忠, 邢 达, 谷怀民, 杨迪武, 杨思华, 曾吕明. 改进的同步迭代算法在光声血管成像中的应用.  , 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟.  , 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  7850
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-13
  • 修回日期:  2015-10-28
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map