-
Railway plays a major role in our daily life and national economy. In recent years, people payed much more attention to the safety operation of the high-speed train. In fact, the rail cracks originate from surface micro cracks will directly affect the safety of high-speed train. Therefore, it is vital to detect the rail surface micro cracks. Numerous nondestructive testing methods have been developed and applied in the detection of high speed rail cracks, such as magnetic particle testing, eddy current testing, and ultrasonic testing, etc. However, all the above conventional methods could only achieve crack information from the point of one-dimensional signal but not effective for the detection of surface micro cracks. A surface defect detection method based on photoacoustic (PA) signal from high speed rail is proposed soas to detect the surface crack more exactly and visually. Simulation and experiments are designed to validate the proposed method. Firstly, three models of high-speed rail with transverse crack, oblique crack, and scale stripping are established respectively. Meanwhile, the PA effect is simulated by finite element analysis and K-wave. Then, PA image of the rail surface is reconstructed by time inversion reconstruction algorithm, and some parameters, such as the center frequency of ultrasonic sensor and the laser power are also confirmed in further simulation. Subsequently, an experimental platform is established to collect the actual PA signal from a rail surface and to reconstruct PA images of the rail surface and shallow layer. The crack appearing in PA images are clear enough to show the receive crack information, such as sizes, propagating directions, and locations, which can be used to evaluate the rail states and decide processing scheme. It is proved that clear images of rail surface and shallow layer can be received by the detecting method of high-speed rail surface defects based on photoacoustic signal, and the surface cracks can be detected effectively.
-
Keywords:
- nondestructive detection /
- photoacoustic imaging /
- high-speed rail /
- finite element method
[1] Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]
[2] Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]
[3] Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546
[4] Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048
[5] Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80
[6] Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141
[7] Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54
[8] Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819
[9] Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1
[10] Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001
[11] Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]
[12] Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]
[13] Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]
[14] Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]
[15] Kenderian S, Djordjevic B 2006 Insight 48 336
[16] Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8
[17] Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48
[18] Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896
[19] Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783
[20] Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473
[21] Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713
[22] Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]
[23] Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]
[24] Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]
-
[1] Zhao X Q, Wang W J, Zhong W, Liu Q Y, Zhu M H, Zhou Z R 2009 J. China Railway Soc. 2 84 (in Chinese) [赵雪芹, 王文健, 钟雯, 刘启跃, 朱旻昊, 周仲荣 2009 铁道学报 2 84]
[2] Xie Y Y, Zhou S X, Xie J L, Liu Q F 2009 Engineer. Mech. 26 31 (in Chinese) [谢云叶, 周素霞, 谢基龙, 刘青峰 2009 工程力学 26 31]
[3] Song Z L, Yamada T, Shitara H, Takemura Y 2011 J. Electromag. Anal. Appl. 3 546
[4] Liu X, Lovett A, Dick T, Rapik S, Barkan Christopher P 2014 J. Transport. Engineer. 140 04014048
[5] Zhang X, Feng N, Wang Y, Shen Y 2014 Appl. Acoust. 86 80
[6] Sun J, Zhao Y, Song J, Ma J, Guo R, Liu S, Nan G, Jia Z 2014 J. Optoelectron. Laser 25 141
[7] Yang R, He Y, Gao B, Gui Y, Peng J 2015 Measurement: J. Int. Measur. Confeder. 66 54
[8] Sun M J, Wang Y, Zhang X, Liu Y, Wei Q, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p819
[9] Maclean A G, Schneider L T, Freytag A I, Adam Gribble, Barnes J A, Hans-Peter Loock 2014 Applied Physics B Lasers Optics (Berlin: Springer-Verlag) p1
[10] Yan L, Gao C, Zhao B, Ma X, Zhuang N, Duan H 2012 Int. J. Thermophys. 33 2001
[11] Jiao Y, Jian X H, Xiang Y J, Cui X Y 2013 Acta Phys. Sin. 62 087803 (in Chinese) [焦阳, 简小华, 向永嘉, 崔崤峣 2013 62 087803]
[12] Wang J S, Xu X D, Liu X J, Xu G C 2008 Acta Phys. Sin. 57 7765 (in Chinese) [王敬时, 徐晓东, 刘晓峻, 许钢灿 2008 57 7765]
[13] Zeng W, Wang H T, Tian G Y, Hu G X, Wang W 2015 Acta Phys. Sin. 64 134302 (in Chinese) [曾伟, 王海涛, 田贵云, 胡国星, 汪文 2015 64 134302]
[14] Ding Y S, Yang S X, Gan C B 2015 J. Vibration and Shock 34 34 (in Chinese) [丁一珊, 杨世锡, 甘春标 2015 振动与冲击 34 34]
[15] Kenderian S, Djordjevic B 2006 Insight 48 336
[16] Podymova N B, Karabutov A A, Cherepetskaya E B 2014 Laser Phys. 24 8
[17] Cavuto A, Martarelli M, Pandarese G, Revel G M, Tomasini E P 2015 Ultrasonics 55 48
[18] Sun M J, Lin X W, Wu Z H, Liu Y, Shen Y, Feng N Z 2014 Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014 IEEE International, Montevideo, Uruguay, May 12-15, 2014 p896
[19] Gusev V E, Karabutov A A 1993 Laser Optoacoustics (New York: American Institute of Physics) pp780-783
[20] Oraevsky A A, Karabutov A A 2003 Bionmedical Photonics Handbook (Boca Raton: CRC Press) pp462-473
[21] Cox B T, Laufer J G, Beard P C 2009 Photons Plus Ultrasound: Imaging and Sensing 2009 (USA: SPIE) p717713
[22] Ministry of Railways of the People's Republic of China 2011 Classification of rail damage TB/T 1778-2010 (Beijing: China Railway Publishing House) pp1-8 (in Chinese) [中华人民共和国铁道部 2011 钢轨伤损分类TB/T 1778-2010 (北京: 中国铁道出版社) 第18页]
[23] Zhou G L, Kong L B, Sun H Y 2008 Manufact. Automat. 09 90 (in Chinese) [周桂莲, 孔令兵, 孙海迎 2008制造业自动化 09 90]
[24] Tan Y, Huang X M, Ren Y J 2011 J. Appl. Opt. 05 831 (in Chinese) [谭毅, 黄新民, 任亚杰 2011 应用光学 05 831]
计量
- 文章访问数: 7864
- PDF下载量: 400
- 被引次数: 0