搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯互补超表面的可调谐太赫兹吸波体

张会云 黄晓燕 陈琦 丁春峰 李彤彤 吕欢欢 徐世林 张晓 张玉萍 姚建铨

引用本文:
Citation:

基于石墨烯互补超表面的可调谐太赫兹吸波体

张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨

Tunable terahertz absorber based on complementary graphene meta-surface

Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan
PDF
导出引用
  • 通过在石墨烯超表面设计周期性切条, 实现了基于石墨烯互补超表面的可调谐太赫兹吸波体. 通过改变外加电压来改变石墨烯的费米能级, 吸波体实现频率可调谐特性. 研究了石墨烯费米能级、结构尺寸对超材料吸波体吸收特性的影响, 并利用多重反射理论研究了其物理机理并且证明了模拟方法的可行性. 研究结果表明: 当石墨烯费米能级取0.6 eV, 基底厚度13 m, 石墨烯上切条长宽分别为2.9 m, 0.1 m 时, 吸波体在1.865 THz可以实现99.9%的完美吸收; 石墨烯费米能级从0.4 eV增大到0.9 eV, 吸波体共振频率从1.596 THz 蓝移到2.168 THz, 且伴随共振吸收率的改变, 吸收率在0.6 eV时达到最大; 通过改变费米能级实现的最大吸收率调制度达84.55%.
    Recently, metamaterials have attracted considerable attention because of their unique properties and potential applications in many areas, such as in bio-sensing, imaging, and communication. Among these researches, the metamaterial absorber has aroused much interest of researchers. The metamaterial absorber is important due to a broad range of potential application to solar energy, sensing, coatings for reducing the reflection, and selective thermal emitters. As a two-dimensional honeycomb structure composed of a single layer carbon atom, graphene is a promising candidate for tuning metamaterials and plasmonic structures due to its unique properties which differ substantially from those of metal and semiconductors. In this paper, we propose a tunable terahertz absorber based on graphene complementary metamaterial structure by removing periodic cut-wires on the graphene meta-surface. On the basis of the tunability of graphene conductivity, the absorber possesses a frequency tunable characteristic resulting from the change of graphene Femi level by altering the applied voltage. Here, we mainly study the influences of Fermi level of graphene and the size of the structure on the absorption characteristic of this metamaterial absorber. We finally obtain the corresponding Femi level and structural size under the perfect absorption condition. In addition, we utilize the multiple reflection theory to explore the physical mechanism, and verify the feasibility of the simulation method at the same time. The research indicates that the absorber can achieve 99.9% perfect absorption at 1.865 THz when the graphene Femi level is 0.6 eV, the thickness of substrate is 13 m, and the length and width of slit are 2.9 m and 0.1 m, respectively. When graphene Femi level increases from 0.4 eV to 0.9 eV, the resonance frequency of the absorber is blue-shifted from 1.596 THz to 2.168 THz. Meanwhile, the absorption rate increases from 84.68% at 0.4 eV to a maximum value of 99.9% at 0.6 eV, then gradually decreases to 86.63% at 0.9 eV. The maximum modulation of the absorption rate is 84.55% by varying the Femi level. When the thickness of substrate increases, the resonant frequency is red-shifted. The resonant frequency is blue-shifted when both the width and the length of the cut-wire on graphene increase. On the basis of the proposed graphene meta-surface absorber, one can gain different resonant frequencies by adjusting the structure geometric size and graphene Femi level. The graphene complementary structure can also be designed into different patterns to achieve the purpose of practical application.
      通信作者: 张会云, sdust_thz@126.com;qchen1103@163.com ; 陈琦, sdust_thz@126.com;qchen1103@163.com
    • 基金项目: 山东省自然科学基金(批准号: ZR2012FM011)、青岛市创新领军人才项目(批准号: 13-CX-25)、中国工程物理研究院太赫兹科学技术基金(批准号: 201401)、青岛经济技术开发区重点科技计划(批准号: 2013-1-64)和国家留学基金资助的课题.
      Corresponding author: Zhang Hui-Yun, sdust_thz@126.com;qchen1103@163.com ; Chen Qi, sdust_thz@126.com;qchen1103@163.com
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), the Qingdao City Innovative Leading Talent Plan, China (Grant No. 13-CX-25), the CAEP THz Science and Technology Foundation (Grant No. 201401), the Science and Technology Project of Qingdao Economic and Technical Development Zone, China (Grant No. 2013-1-64), and the China Scholarship Council.
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang X C 2002 Phys. Med. Biol. 47 3667

    [3]

    Yahiaoui R, Guillet J P, Miollis F D, Mounaix P 2013 Opt. Lett. 38 4988

    [4]

    Alves F, Grbovic D, Keaney B, Lavrik N V, Karunasiri G 2013 Opt. Express 21 13256

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [7]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [8]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [9]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [12]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese) [戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [13]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese) [莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [14]

    Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [15]

    Ye Y Q, Jin Y, He S L 2010 J. Opt. Soc. Am. B 27 498

    [16]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [17]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [18]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [19]

    Liu C, Ye J, Zhang Y 2010 Opt. Commun. 283 865

    [20]

    Zhou H, Ding F, Ji Y, He S L 2011 Prog. Electromagn. Res. 119 449

    [21]

    Hu F R, Qian Y X, Li Z, Niu J H, Nie K, Xiong X M, Zhang W T, Peng Z Y 2013 J. Opt. 15 055101

    [22]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [23]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144

    [24]

    VasićB, GajićR 2013 Appl. Phys. Lett. 103 261111

    [25]

    Woo J M, Kim M S, Kim H W, Jang J H 2014 Appl. Phys. Lett. 104 081106

    [26]

    Amin M, Farhat M, Bağci H 2013 Opt. Express 21 29938

    [27]

    He S, Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757

    [28]

    Xu B Z, Gu C, Li Z 2013 Opt. Express 21 23803

    [29]

    Wu B, Tuncer H M, Naeem M, Yang B, Cole M T, Milne W I, Hao Y 2014 Sci. Rep. 4 4130

    [30]

    Zhu Z H, Guo C C, Zhang J F, Liu K, Yuan X D, Qin S Q 2015 Appl. Phys. Express 8 015102

    [31]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743

    [32]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang X, Xu S L, Zhang H Y 2015 Chin. Phys. Lett. 32 068101

    [33]

    Fan Y, Shen N H, Koschny T, Soukoulis C M 2015 ACS Photon. 2 151

    [34]

    Chen H T 2012 Opt. Express 20 7165

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222

    [37]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [38]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [39]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang X C 2002 Phys. Med. Biol. 47 3667

    [3]

    Yahiaoui R, Guillet J P, Miollis F D, Mounaix P 2013 Opt. Lett. 38 4988

    [4]

    Alves F, Grbovic D, Keaney B, Lavrik N V, Karunasiri G 2013 Opt. Express 21 13256

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [7]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [8]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2013 Appl. Opt. 52 4536

    [9]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [12]

    Dai Y H, Chen X L, Zhao Q, Zhang J H, Chen H W, Yang C R 2013 Acta Phys. Sin. 62 064101 (in Chinese) [戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁 2013 62 064101]

    [13]

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801 (in Chinese) [莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 62 237801]

    [14]

    Ma Y, Chen Q, Grant J, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [15]

    Ye Y Q, Jin Y, He S L 2010 J. Opt. Soc. Am. B 27 498

    [16]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photon. Technol. Lett. 26 111

    [17]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [18]

    Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M, Aeppli G 2014 Opt. Lett. 39 1589

    [19]

    Liu C, Ye J, Zhang Y 2010 Opt. Commun. 283 865

    [20]

    Zhou H, Ding F, Ji Y, He S L 2011 Prog. Electromagn. Res. 119 449

    [21]

    Hu F R, Qian Y X, Li Z, Niu J H, Nie K, Xiong X M, Zhang W T, Peng Z Y 2013 J. Opt. 15 055101

    [22]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [23]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144

    [24]

    VasićB, GajićR 2013 Appl. Phys. Lett. 103 261111

    [25]

    Woo J M, Kim M S, Kim H W, Jang J H 2014 Appl. Phys. Lett. 104 081106

    [26]

    Amin M, Farhat M, Bağci H 2013 Opt. Express 21 29938

    [27]

    He S, Chen T 2013 IEEE Trans. Terahertz Sci. Technol. 3 757

    [28]

    Xu B Z, Gu C, Li Z 2013 Opt. Express 21 23803

    [29]

    Wu B, Tuncer H M, Naeem M, Yang B, Cole M T, Milne W I, Hao Y 2014 Sci. Rep. 4 4130

    [30]

    Zhu Z H, Guo C C, Zhang J F, Liu K, Yuan X D, Qin S Q 2015 Appl. Phys. Express 8 015102

    [31]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743

    [32]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang X, Xu S L, Zhang H Y 2015 Chin. Phys. Lett. 32 068101

    [33]

    Fan Y, Shen N H, Koschny T, Soukoulis C M 2015 ACS Photon. 2 151

    [34]

    Chen H T 2012 Opt. Express 20 7165

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys. Condens. Matter 19 026222

    [37]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257

    [38]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [39]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响.  , 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [4] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器.  , 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收.  , 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [8] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展.  , 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [9] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究.  , 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [10] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [13] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究.  , 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [14] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质.  , 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [16] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附.  , 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [17] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器.  , 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [18] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收.  , 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器.  , 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [20] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器.  , 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
计量
  • 文章访问数:  8463
  • PDF下载量:  775
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-13
  • 修回日期:  2015-09-17
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map