搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变

宋桂林 苏健 张娜 常方高

引用本文:
Citation:

多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变

宋桂林, 苏健, 张娜, 常方高

Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics

Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao
PDF
导出引用
  • 采用溶胶凝胶法制备Bi1-xCaxFeO3 (x=0, 0.05, 0.1, 0.15, 0.2)陶瓷样品. X衍射图谱表明所有样品的主衍射峰均与纯相BiFeO3相符合且具有良好的晶体结构. 随着x的增大, Bi1-xCaxFeO3样品的主衍射峰由双峰(104)与(110) 逐渐重叠为单峰(110), 当x ≥0.15时, 样品呈现正方晶系结构; 扫描电镜形貌分析可知, 晶粒由原来的0.5 μm逐渐增大到2 μm. Bi1-xCaxFeO3样品介电常数和介电损耗随着x 的增加先增大而后减小. 当f=1 kHz, Bi0.9Ca0.1FeO3 的介电常数达到最大值, 是BiFeO3的7.5倍, 而Bi0.8Ca0.2FeO3的介电常数达到最小值, 仅仅是BiFeO3的十分之一. Bi1-xCaxFeO3样品所呈现的介电特性是由偶极子取向极化和空间电荷限制电流两种极化机理共同作用的结果. 随着Ca2+ 的引入, BiFeO3 样品的铁磁性显著提高. X射线光电子能谱图表明Fe2+和Fe3+ 共存于Bi1-xCaxFeO3 样品中, Fe2+/Fe3+比例随着Ca2+ 掺杂量的增加而增大, 证明Ca2+掺杂增加了Fe2+的含量, 增强BiFeO3的铁磁特性. 从M-T曲线观察到BiFeO3样品在878 K附近发生铁磁相变, 示差扫描量热法测试再次证明BiFeO3 在878 K发生相变. Ca2+掺杂使BiFeO3样品的TN略有变化而TM基本不变, 其主要原因是Fe-O-Fe反铁磁超交换作用的强弱和磁结构相对稳定.
    Multiferroic Bi1-xCaxFeO3 (x=0, 0.05, 0.1, 0.15, 0.2) ceramics are prepared by sol-gel method. The effects of Ca doping on the structure, delectrical, ferromagnetism properties and high temperature magnetic behavior of BiFeO3 ceramics are studied. The structures of BiFeO3 ceramics are characterized by X-ray diffraction (XRD). The results show that all the peaks for Bi1-xFexO3 samples can be indexed according to the crystal structure of pure BiFeO3. The characteristic diffraction peaks of Bi1-xCaxFeO3 samples become gradually wider and the (104) and (110) peaks of BiFeO3 merge partially into a broadened peak (110) with Ca2+ doping increasing. XRD analysis reveals a phase transition in Ca-doped BiFeO3 from rhombohedral to orthorhombic when x is larger than 0.15. The scan electron microscope images indicate that Ca2+ doping significantly increases the grain sizes of BiFeO3 ceramic. The average grain sizes of Bi1-xCaxFeO3 samples range from 0.5 to 2 μm.#br#The dielectric behaviors of Bi1-xCaxFeO3 ceramics change with content x and frequency. The dielectric constant measured at 1 kHz reaches a maximum value of εr=4603.9 when x=0.1, seven times as big as that of pure BiFeO3. With further increasing the Ca content (x=0.15, 0.2), the value of the dielectric constant is back to the level of pure BiFeO3. The dielectric constant of Bi0.8Ca0.2FeO3 (εr=57) is less than one-tenth that of BiFeO3 (εr=629.9). The dielectric losses of Bi1-xCaxFeO3 samples become smaller than that of BiFeO3 ceramic. This dramatic change in the dielectric properties of Bi1-xCaxFeO3 samples can be understood in terms of orientational relaxation of dipoles and the space charge limited conduction associated with crystal defects at low frequency.#br#The magnetic measurements show that all samples possess strong ferromagnetism at room temperature expect BiFeO3 which is weakly ferromagnetic. The X-ray photoelectron spectroscopy spectrum indicates the coexistence of Fe2+ and Fe3+ in Bi1-xCaxFeO3 samples. The ratios of Fe2+/Fe3+ are 21/79, 23/77, 27/73, 32/68, and 32/68, respectively. The ratio of Fe2+/Fe3+ increases with doping Ca content increasing, and the magnetic preparation of BiFeO3 is enhanced.#br#It is evidenced that the ferromagnetic phase transitions of Bi1-xCaxFeO3samples occur at 878 K from M-T curve and the phase transition of BiFeO3 happens at 878 K by DSC measurement. The change in TN of Bi1-xCaxFeO3 depends mainly on the Fe-O-Fe super-exchange strength and magnetic structure of relative stability.
      通信作者: 常方高, chfg@htu.cn
    • 基金项目: 国家自然科学基金(批准号: U1204111)、河南省重点科技攻关项目(批准号: 122102210191)和河南省基础与前沿技术研究计划(批准号: 122300410203)资助的课题.
      Corresponding author: Chang Fang-Gao, chfg@htu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1204111), the Key Scientific and Technological Research Projects in Henan Province, China (Grant No. 122102210191), and the Basic and Advanced Technology Research Project in Henan Province, China (Grant No. 122300410203).
    [1]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342 63

    [2]

    Yang C H, Seidel J, Kim S Y, Rossen P B, Yu P, Gajek M, Chu Y H, Martin L W, Holcomb M B, He Q, Maksymovych P, Balke N, Kalinin S V, Baddorf A P, Basu S R, Scullin M L, Ramesh R 2009 Nature Mater. 8 485

    [3]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [4]

    Neaton J B, Ederer C, Waghaaren U V 2005 Phys. Rev. B 71 014113

    [5]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [6]

    Kornev Igor A, Lisenkov S, Haumont R, Dkhil B, Bellaiche1 L 2007 Phys. Rev. Lett. 99 227602

    [7]

    Zhang N, Su J, Liu Z Y, Fu Z M, Wang X W, Song G L, Chang F G 2014 J. Appl. Phys. 115 133912

    [8]

    Khomchenko V A, Kiselev D A, Selezneva E K, Vieira J M, Lopes A M L, Pogorelov Y G, Araujo J P, Kholkin A L 2008 Mater. Lett. 62 1927

    [9]

    Wen X Li, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Dong X L, Chen C L 2014 Chin. Phys. B 23 117703

    [10]

    He S M, Liu G L, Zhu D P, Kang S S, Chen Y X, Yan S S, Mei L M 2014 Chin. Phys. B 23 117703

    [11]

    Perejón A, Pedro E, Jiménez S, Poyato R, Masó N, Anthony R 2015 J. Eur. Ceram. Soc. 35 2283

    [12]

    Gaur A, Singh P, Choudhary N, Kumar D, Shariq M, Singh K, Kaur N, Kaur D 2011 Physica B 406 1877

    [13]

    Sharma P, Verma V 2015 J. Magn. Magn. Mat. 374 18

    [14]

    Arora M, Chauhan S, Sati P C, Kumarn M, Chhoker S 2014 Ceram Int. 40 13347

    [15]

    Nalwa K S, Garg A, Upadhyay A 2008 Mater. Lett. 62 878

    [16]

    Lazenka V V, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Vanacken J, Ziese M, Grundmann M, Moshchalkov V V 2013 J. Phys. D: Appl. Phys. 46 175006

    [17]

    Puli V S, Pradhan D K, Katiyar R K, Coondoo I, Panwar N, Misra P, Chrisey D B, Scott J F, Katiyar R S 2014 J. Phys. D: Appl. Phys. 47 075502

    [18]

    Yang C, Liu C Z, Wang C M, Zhang W G, Jiang J S 2012 J. Magn. Magn. Mat. 324 1483

    [19]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mat. 324 2121

    [20]

    Song G L, Luo Y P, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林, 罗艳萍, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [21]

    Tirupathi P, Chandra A 2013 J. Alloys. Compd. 564 151

    [22]

    Su J, Zhang N, Zhou X H, Song G L, Chang F G 2013 J. Chin. Ceram. Soc. 41 1185 (in Chinese) [苏建, 张娜, 周晓辉, 宋桂林, 常方高 2013 硅酸盐学报 41 1185]

    [23]

    Song G L, Ma G J, Su J, Wang T X, Yang H G, Chang F G 2014 Ceram. Int. 40 3579

    [24]

    Song G L, Su J, Ma G J, Wang T X, Yang H G, Chang F G 2014 Mater. Sci. Semicond. Proc. 27 899

    [25]

    Yuan G L, Siu W 2006 J. Appl. Phys. 100 024109

    [26]

    Jaiparkash, Kumar Y, Chauhan R S, Kumar R 2011 Solid State Sci. 13 1869

    [27]

    Kumar A, Yadav K L, Rani J Y, Macromol A 2012 Chem. Phys. 134 430

    [28]

    Hu Y C, Jiang Z Z, Cao K G, Cheng G F, Ge J J, L X M, Wu X S 2012 Chem. Phys. Lett. 509 5908

    [29]

    Wang Y P, Zhang M F, L M J 2004 Appl. Phys. Lett. 84 1731

    [30]

    Das R, Mandal K 2012 J. Magn. Magn. Mat. 324 1913

  • [1]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342 63

    [2]

    Yang C H, Seidel J, Kim S Y, Rossen P B, Yu P, Gajek M, Chu Y H, Martin L W, Holcomb M B, He Q, Maksymovych P, Balke N, Kalinin S V, Baddorf A P, Basu S R, Scullin M L, Ramesh R 2009 Nature Mater. 8 485

    [3]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [4]

    Neaton J B, Ederer C, Waghaaren U V 2005 Phys. Rev. B 71 014113

    [5]

    Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1

    [6]

    Kornev Igor A, Lisenkov S, Haumont R, Dkhil B, Bellaiche1 L 2007 Phys. Rev. Lett. 99 227602

    [7]

    Zhang N, Su J, Liu Z Y, Fu Z M, Wang X W, Song G L, Chang F G 2014 J. Appl. Phys. 115 133912

    [8]

    Khomchenko V A, Kiselev D A, Selezneva E K, Vieira J M, Lopes A M L, Pogorelov Y G, Araujo J P, Kholkin A L 2008 Mater. Lett. 62 1927

    [9]

    Wen X Li, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Dong X L, Chen C L 2014 Chin. Phys. B 23 117703

    [10]

    He S M, Liu G L, Zhu D P, Kang S S, Chen Y X, Yan S S, Mei L M 2014 Chin. Phys. B 23 117703

    [11]

    Perejón A, Pedro E, Jiménez S, Poyato R, Masó N, Anthony R 2015 J. Eur. Ceram. Soc. 35 2283

    [12]

    Gaur A, Singh P, Choudhary N, Kumar D, Shariq M, Singh K, Kaur N, Kaur D 2011 Physica B 406 1877

    [13]

    Sharma P, Verma V 2015 J. Magn. Magn. Mat. 374 18

    [14]

    Arora M, Chauhan S, Sati P C, Kumarn M, Chhoker S 2014 Ceram Int. 40 13347

    [15]

    Nalwa K S, Garg A, Upadhyay A 2008 Mater. Lett. 62 878

    [16]

    Lazenka V V, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Vanacken J, Ziese M, Grundmann M, Moshchalkov V V 2013 J. Phys. D: Appl. Phys. 46 175006

    [17]

    Puli V S, Pradhan D K, Katiyar R K, Coondoo I, Panwar N, Misra P, Chrisey D B, Scott J F, Katiyar R S 2014 J. Phys. D: Appl. Phys. 47 075502

    [18]

    Yang C, Liu C Z, Wang C M, Zhang W G, Jiang J S 2012 J. Magn. Magn. Mat. 324 1483

    [19]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mat. 324 2121

    [20]

    Song G L, Luo Y P, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林, 罗艳萍, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [21]

    Tirupathi P, Chandra A 2013 J. Alloys. Compd. 564 151

    [22]

    Su J, Zhang N, Zhou X H, Song G L, Chang F G 2013 J. Chin. Ceram. Soc. 41 1185 (in Chinese) [苏建, 张娜, 周晓辉, 宋桂林, 常方高 2013 硅酸盐学报 41 1185]

    [23]

    Song G L, Ma G J, Su J, Wang T X, Yang H G, Chang F G 2014 Ceram. Int. 40 3579

    [24]

    Song G L, Su J, Ma G J, Wang T X, Yang H G, Chang F G 2014 Mater. Sci. Semicond. Proc. 27 899

    [25]

    Yuan G L, Siu W 2006 J. Appl. Phys. 100 024109

    [26]

    Jaiparkash, Kumar Y, Chauhan R S, Kumar R 2011 Solid State Sci. 13 1869

    [27]

    Kumar A, Yadav K L, Rani J Y, Macromol A 2012 Chem. Phys. 134 430

    [28]

    Hu Y C, Jiang Z Z, Cao K G, Cheng G F, Ge J J, L X M, Wu X S 2012 Chem. Phys. Lett. 509 5908

    [29]

    Wang Y P, Zhang M F, L M J 2004 Appl. Phys. Lett. 84 1731

    [30]

    Das R, Mandal K 2012 J. Magn. Magn. Mat. 324 1913

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究.  , 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算.  , 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [3] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型.  , 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [4] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响.  , 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [5] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正.  , 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [6] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟.  , 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [7] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响.  , 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [8] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性.  , 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [9] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响.  , 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [10] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力.  , 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [11] 李忠虎, 李林, 祁阳. BaCoxZn2-xFe16O27六角铁氧体电子结构与介电特性的第一性原理研究.  , 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [12] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响.  , 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [13] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究.  , 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [14] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转.  , 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [15] 杨雁, 李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性.  , 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [16] 尹桂来, 李建英, 李盛涛. 利用普适介电理论对银/氧化锌复合材料介电性能的研究.  , 2009, 58(6): 4219-4224. doi: 10.7498/aps.58.4219
    [17] 李晓兵, 赵祥永, 汪尧进, 王飞飞, 陈超, 罗豪甦. 由BaTiO3晶体结构相变时的介电特性研究其电场作用下的偶极子偏转路径.  , 2009, 58(6): 4225-4229. doi: 10.7498/aps.58.4225
    [18] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响.  , 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究.  , 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应.  , 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
计量
  • 文章访问数:  6245
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-27
  • 修回日期:  2015-09-29
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map