搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响

宋桂林 罗艳萍 苏健 周晓辉 常方高

引用本文:
Citation:

Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响

宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高

Effects of Dy and Co co-substitution on the magnetic properties and TC of BiFeO3 ceramics

Song Gui-Lin, Luo Yan-Ping, Su Jian, Zhou Xiao-Hui, Chang Fang-Gao
PDF
导出引用
  • 采用快速液相烧结法制备BiFeO3和Bi0.95Dy0.05Fe1-xCoxO3 (x=0, 0.05, 0.1, 0.15)陶瓷样品. 实验结果表明: 所有样品的主衍射峰与纯相BiFeO3相符合且具有良好的晶体结构, 随着Co3+掺杂量的增大, Bi0.95Dy0.05Fe1-xCoxO3样品的主 衍射峰由双峰(104)与(110)逐渐重叠为单峰(110), 当掺杂量x>0.05时, 样品呈现正方晶系结构; SEM形貌分析可知: Dy3+, Co3+共掺杂使BiFeO3晶粒尺度由原来的3—5 μ减小到约1 μ. 室温下, BiFeO3样品表现出较弱的铁磁性, 随着Dy3+和Co3+掺杂, BiFeO3样品的铁磁性显著提高. 在外加磁场为30 kOe的作用下, Bi0.95Dy0.05Fe1-xCoxO3 (x=0.05, 0.1, 0.15)的Mr分别为0.43, 0.489, 0.973 emu/g; MS分别为0.77, 1.65, 3.08 emu/g. BiFeO3和Bi0.95Dy0.05Fe1-xCoxO3样品磁矩M随着温度T的升高而逐渐减小, Dy掺杂使BiFeO3样品的TN由644 K升高到648 K, 而TC基本没有变化. Dy和Co共掺杂导致BiFeO3样品磁相变温度TC由870 K降低到780 K, 其TC变化主要取决于Fe-O-Fe反铁磁超交换作用的强弱和磁结构的相对稳定性.
    Multiferroic Bi0.95Dy0.05Fe1-xCoxO3 (x=0, 0.05, 0.1, 0.15) ceramics were prepared by rapid liquid phase sintering method. We studied the effect of (Dy+Co) doping on the structure, electrical and ferromagnetism properties of BiFeO3 ceramics. The structure and morphology of BiFeO3 ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopey (SEM). The results showed that all the peaks for Bi0.95Dy0.05Fe1-xCoxO3 samples can be indexed based on the crystal structure of pure BiFeO3. And XRD analysis revealed a phase transition in (Dy+Co) co-doped BiFeO3 when x was larger than 0.1 and grain sizes changed from 1 to 5 μm. Magnetic hysteresis loops were clearly observed in co-substituted specimens and magnetization was greatly improved. Magnetic measurements showed that all samples possess strong ferromagnetism at room temperature expect BiFeO3 and Bi0.95Dy0.05FeO3, which are weakly ferromagnetic. The M'rs, of Bi0.95Dy0.05Fe1-xCoxO3 with x=0.05, 0.01 and 0.15 are 0.43, 0.489, 0.973 emu/g and the M'rs of them are 0.77, 1.65, 3.08 emu/g, respectively. The magnetic moment of BiFeO3 and B0.95Dy0.05Fe1-xCoxO3 ceramics varies with temperature from 300 to 900 K at an applied field of 5 kOe. It shows that the TN of BiFeO3 from 644 to 648 K with different content of Dy3+ can be changed by crystal structures and exchanges between Dy3+-Fe3+. The phase transition temperature of Bi0.95Dy0.05Fe1-xCoxO3 shifted to lower temperatures from 870 K to 780 K demonstrate that Co3+ doping causes a drop of TC as compared with BiFeO3. The change of TC of Bi0.95Dy0.05Fe1-xCoxO3 depends mainly on the Fe-O-Fe super-exchange strength and the relative stability of magnetic structure.
    • 基金项目: 河南省重点科技攻关项目(批准号:122102210191)、河南省基础与前沿技术研究计划项目(批准号:122300410231,122300410203)和河南省教育厅自然科学研究计划(2011A140014)资助的课题.
    • Funds: Project supported by the Henan Provincial key Scientific and Technological Research Projects (Grant No: 122102210191), the Basic Research Projects in Henan Province, China (Grant Nos. 122300410231, 122300410203), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 2011A026).
    [1]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342 63

    [2]

    Yang H, Wang Y Q 2010 Appl. Phys. Lett. 96 012909

    [3]

    Nelson C T, Gao P, Jokisaari J R, Adamo C, Folkman C M, Eom C B, Schlom D G, Pan X Q S 2011 Science 334 968

    [4]

    Neaton J B, Ederer C, Waghaaren U V 2005 Phys. Rev. B 71 014113

    [5]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta. Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 71412]

    [6]

    Kornev Igor A, Lisenkov S, Haumont R, Dkhil B, Bellaiche1 L 2007 Phys. Rev. Lett. 99 227602

    [7]

    Naganum H, Shimura N, Miura J, Shima H, Yasui S, Okamur S 2008 J. Appl. Phys. 103 072314

    [8]

    Jun Y K, Hong S H 2007 Solid. State. Commun. 144 329

    [9]

    Chang F G, Zhang N, Song G L 2007 J. Phys. D: Appl. Phys. 40 7799

    [10]

    Choi E M, Patnaik S, Weal E, Sahonta S L, Wang H, Macmanus J L 2011 Appl. Phys. Lett. 98 012509

    [11]

    Nalwa K S, Garg A, Upadhyay A 2008 Mater. Lett. 62 878

    [12]

    Du Y, Cheng Z X, Shahbazi M, Edward W C, Dou S X, Wang X L 2010 J. Allo. Comp. 490 637

    [13]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta. Mater 57 5137

    [14]

    Palkar V R, Prashanthi K, Mandal M 2010 Mater. Lett. 64 1455.

    [15]

    Liu S, Li J, Pan W Lattice 2009 Rare mateal materials and engineering 38 653

    [16]

    Yang K G, Zhang Y L, Yang S H, Wang B 2010 J. Appl. Phys. 107 124109

    [17]

    Qian F Z, Jiang J S, Jiang D M, Wang C M, Zhang W G 2010 J. Magn. Magn. Mat. 322 3127

    [18]

    Zheng X H, Xu Q G, Wen Z, Lang X Z, Wu D, Qiu T, Xu M X 2010 J. Allo. Comp. 499 108

    [19]

    Kumar A, Yadav K L, Yoti R J 2012 Macromol. Chem. Phys. 134 430

    [20]

    Yang C, Liu C Z, Wang C M, Zhang W G, Jiang J S 2012 J. Magn. Magn. Mat. 324 1483

    [21]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mat. 324 2121

    [22]

    Mao WW, Li X A, Li Y T, Li P, Bao G, Yang T, Yang J P 2012 Mater. Lett. 76 135

    [23]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta. Phys. Sin. 61 177501 (in Chinese) [宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [24]

    Kumar A, Yadav K L, Rani J Y 2012 Macromol. Chem. Phys. 134 430

    [25]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [26]

    Hu X, Wang W, Miao X Y, Cheng X B 2010 Acta. Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 59 8160]

    [27]

    Zhang X Q, Yu S, Wang X J, Mao J H, Zhu R B, Wang Y, Wang Z, Liu Y Q 2011 J. Allo. Comp. 509 5908

    [28]

    Cheng Z X, Wang X L, Du Y, Dou S X 2010 J. Phys. D: Appl. Phys. 43 242001

    [29]

    Das R, Mandal K 2012 J. Magn. Magn. Mat. 324 1913

    [30]

    Naik V B, Mahendiran R 2009 Solid. State. Commun. 149 754

    [31]

    Li L Y, Yi J X, Ge Y C, Peng Y D 2008 The Chinese Journal of Nonferrous Metals 18 72 (in Chinese) [李丽娅, 易健宏, 葛毅成, 彭元东 2008 中国有色金属学报 18 72]

    [32]

    Franse J M, Boer F R, Frings P H, Gersdorf R, Menovsky A, Muller F A, Radwanski R J, Sinnema S 1985 Phys. Rev. B 31 4346

    [33]

    Belorizky E, Fremy M A, Govigan J P 1987 J. Appl. Phys. 61 3971

  • [1]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342 63

    [2]

    Yang H, Wang Y Q 2010 Appl. Phys. Lett. 96 012909

    [3]

    Nelson C T, Gao P, Jokisaari J R, Adamo C, Folkman C M, Eom C B, Schlom D G, Pan X Q S 2011 Science 334 968

    [4]

    Neaton J B, Ederer C, Waghaaren U V 2005 Phys. Rev. B 71 014113

    [5]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta. Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 58 71412]

    [6]

    Kornev Igor A, Lisenkov S, Haumont R, Dkhil B, Bellaiche1 L 2007 Phys. Rev. Lett. 99 227602

    [7]

    Naganum H, Shimura N, Miura J, Shima H, Yasui S, Okamur S 2008 J. Appl. Phys. 103 072314

    [8]

    Jun Y K, Hong S H 2007 Solid. State. Commun. 144 329

    [9]

    Chang F G, Zhang N, Song G L 2007 J. Phys. D: Appl. Phys. 40 7799

    [10]

    Choi E M, Patnaik S, Weal E, Sahonta S L, Wang H, Macmanus J L 2011 Appl. Phys. Lett. 98 012509

    [11]

    Nalwa K S, Garg A, Upadhyay A 2008 Mater. Lett. 62 878

    [12]

    Du Y, Cheng Z X, Shahbazi M, Edward W C, Dou S X, Wang X L 2010 J. Allo. Comp. 490 637

    [13]

    Khomchenko V A, Shvartsman V V, Borisov P, Kleemann W, Kiselev D A, Bdikin I K, Vieira J M, Kholkin A L 2009 Acta. Mater 57 5137

    [14]

    Palkar V R, Prashanthi K, Mandal M 2010 Mater. Lett. 64 1455.

    [15]

    Liu S, Li J, Pan W Lattice 2009 Rare mateal materials and engineering 38 653

    [16]

    Yang K G, Zhang Y L, Yang S H, Wang B 2010 J. Appl. Phys. 107 124109

    [17]

    Qian F Z, Jiang J S, Jiang D M, Wang C M, Zhang W G 2010 J. Magn. Magn. Mat. 322 3127

    [18]

    Zheng X H, Xu Q G, Wen Z, Lang X Z, Wu D, Qiu T, Xu M X 2010 J. Allo. Comp. 499 108

    [19]

    Kumar A, Yadav K L, Yoti R J 2012 Macromol. Chem. Phys. 134 430

    [20]

    Yang C, Liu C Z, Wang C M, Zhang W G, Jiang J S 2012 J. Magn. Magn. Mat. 324 1483

    [21]

    Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mat. 324 2121

    [22]

    Mao WW, Li X A, Li Y T, Li P, Bao G, Yang T, Yang J P 2012 Mater. Lett. 76 135

    [23]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta. Phys. Sin. 61 177501 (in Chinese) [宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高 2012 61 177501]

    [24]

    Kumar A, Yadav K L, Rani J Y 2012 Macromol. Chem. Phys. 134 430

    [25]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [26]

    Hu X, Wang W, Miao X Y, Cheng X B 2010 Acta. Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 59 8160]

    [27]

    Zhang X Q, Yu S, Wang X J, Mao J H, Zhu R B, Wang Y, Wang Z, Liu Y Q 2011 J. Allo. Comp. 509 5908

    [28]

    Cheng Z X, Wang X L, Du Y, Dou S X 2010 J. Phys. D: Appl. Phys. 43 242001

    [29]

    Das R, Mandal K 2012 J. Magn. Magn. Mat. 324 1913

    [30]

    Naik V B, Mahendiran R 2009 Solid. State. Commun. 149 754

    [31]

    Li L Y, Yi J X, Ge Y C, Peng Y D 2008 The Chinese Journal of Nonferrous Metals 18 72 (in Chinese) [李丽娅, 易健宏, 葛毅成, 彭元东 2008 中国有色金属学报 18 72]

    [32]

    Franse J M, Boer F R, Frings P H, Gersdorf R, Menovsky A, Muller F A, Radwanski R J, Sinnema S 1985 Phys. Rev. B 31 4346

    [33]

    Belorizky E, Fremy M A, Govigan J P 1987 J. Appl. Phys. 61 3971

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究.  , 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算.  , 2021, 70(20): 207501. doi: 10.7498/aps.70.20211085
    [3] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型.  , 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [4] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响.  , 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [5] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正.  , 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [6] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变.  , 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [7] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟.  , 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [8] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响.  , 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [9] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力.  , 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [10] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响.  , 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [11] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究.  , 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [12] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转.  , 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [13] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析.  , 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [14] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响.  , 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [15] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算.  , 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [16] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性.  , 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [17] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析.  , 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [18] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究.  , 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [19] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应.  , 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系.  , 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  7272
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-03
  • 修回日期:  2013-01-07
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map