-
近年来, 磁性纳米管的物理性质和相关应用得到了人们的广泛关注. 利用有效场理论研究了纳米管上双模随机晶场中Blume-Capel模型的磁化强度和相变性质, 得到了系统的磁化强度与温度和随机晶场的关系及其相图. 结果表明: 系统在稀释晶场、交错晶场和同向晶场中会表现出不同的磁学性质和相变行为; 稀释晶场和交错晶场会抑制系统的磁化强度, 导致其基态饱和值小于1, 而同向晶场则不会; 随着随机晶场参量的变化, 系统存在多个相变温度, 并呈现出三临界现象和重入现象.
-
关键词:
- 随机晶场 /
- Blume-Capel模型 /
- 纳米管 /
- 有效场理论
Recently, the physical properties and applications of the magnetic nanotube have attracted a great deal of theoretical and experimental attention. The magnetization and phase transition of spin-1 Blume-Capel model on a cylindrical Ising nanotube with bimodal random crystal fields are investigated by using the effective field theory. Employing numerical calculations, we obtain the phase diagrams and the magnetization, which depend on the temperature and the parameters of random crystal fields. Our obtained results are as follows. (i) Changing the probability (p) and the ratio of the crystal fields (), the bimodal random crystal fields may describe different doped atoms acting on spins. Especially, for p = 0.5, choosing = 0,-1.0,-0.5 and 0.5, the bimodal random crystal fields can respectively degrade four typical distributions of random crystal fields, i. e., the distribution of diluted crystal fields, the distribution of symmetry staggered crystal fields, the distribution of non-symmetry staggered crystal fields, and the distribution of same-direction crystal field. (ii) The system exhibits different magnetic properties and phase transition behaviors in the diluted, staggered and same-direction crystal field. The diluted and staggered crystal fields may reduce the magnetization of the system, resulting in the ground state saturation value of magnetization, which is less than 1, while the same-direction crystal fields cannot result in a similar behavior. (iii) The system shows several phase transition temperatures, i.e., first-order and second-order phase transitions and reentrant phenomenon as the parameters of bimodal random crystal fields change. The tricritical point and reentrant phenomenon do exist for certain values of the probability, the negative crystal field and the ratio of the crystal fields in the system. The relevant experiment is needed to verify the above-mentioned theoretical results.-
Keywords:
- random crystal field /
- Blume-Capel model /
- nanotube /
- effective field theory
[1] Blume M 1966 Phys. Rev. 141 517
[2] Capel H W 1966 Physica 32 966
[3] Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125
[4] Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 56 1691]
[5] Yan S L, Zhu H X 2006 Chin. Phys. 15 3026
[6] Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53
[7] Albayrak E 2013 Physica A 392 552
[8] Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821
[9] Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153
[10] Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
[11] Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547
[12] Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508
[13] Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287
[14] Albayrak E 2011 Physica A 390 1529
[15] Albayrak E 2013 Solid State Commun. 159 76
[16] Albayrak E 2013 Chin. Phys. B 22 077501
[17] Akıncı , Yksel Y, Polat H 2011 Physica A 390 541
[18] Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125
[19] Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641
[20] Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109
[21] H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401
[22] Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481
[23] Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495
[24] Kaneyoshi T 1993 Acta Phys. Pol. A 83 703
[25] Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025
[26] Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497
[27] Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773
-
[1] Blume M 1966 Phys. Rev. 141 517
[2] Capel H W 1966 Physica 32 966
[3] Keskin M, Canko O, Temizer 2005 Phys. Rev. E 72 036125
[4] Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 56 1691]
[5] Yan S L, Zhu H X 2006 Chin. Phys. 15 3026
[6] Masrour R, Bahmad L, Hamedoun M, Benyoussef A, Hlil E K 2013 Solid State Commun. 162 53
[7] Albayrak E 2013 Physica A 392 552
[8] Zhou D, Cai L H, Wen F S, Li F S 2007 Chinese J. Chem. Phys. 20 821
[9] Davis D M, Moldovan M, Young D P 2006 Solid State Lett. 9 153
[10] Kaneyoshi T 2011 J. Magn. Magn. Mater. 323 1145
[11] Cankoa O, Erdinç A, Taşkın F, Atişb M 2011 Phys. Lett. A 375 3547
[12] Canko O, Erdinç A, Taşkın F, Yıldırım A F 2012 J. Magn. Magn. Mater. 324 508
[13] Taşkin F, Canko O, Erdinç A, Yıldırım A F 2014 Physica A 407 287
[14] Albayrak E 2011 Physica A 390 1529
[15] Albayrak E 2013 Solid State Commun. 159 76
[16] Albayrak E 2013 Chin. Phys. B 22 077501
[17] Akıncı , Yksel Y, Polat H 2011 Physica A 390 541
[18] Yigit A, Albayrak E 2013 J. Magn. Magn. Mater. 329 125
[19] Xing L Y, Yan S L 2012 J. Magn. Magn. Mater. 324 3641
[20] Magoussi H, Zaim A, Kerouad M 2013 J. Magn. Magn. Mater. 344 109
[21] H Magoussi, Zaim A, Kerouad M 2013 Chin. Phys. B 22 116401
[22] Kaneyoshi T, Fittipaldi I P, Honmura R, Manabe T 1981 Phys. Rev. B 24 481
[23] Kaneyoshi T, Tucker J W, Jaščur M 1992 Physica A 186 495
[24] Kaneyoshi T 1993 Acta Phys. Pol. A 83 703
[25] Keskin M, Şarli N, Deviren B 2011 Solid State Commun. 151 1025
[26] Kaneyoshi T 1991 J. Phys. Condens. Matter 3 4497
[27] Kaneyoshi T, Mielnicki J 1990 J. Phys. Condens. Matter 2 8773
计量
- 文章访问数: 5675
- PDF下载量: 118
- 被引次数: 0