搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究

刘军 付峥 冯其京 王裴

引用本文:
Citation:

爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究

刘军, 付峥, 冯其京, 王裴

Simulation study of the colliding bulge and surface micro-jet of metal flyers driven by detonation

Liu Jun, Fu Zheng, Feng Qi-Jing, Wang Pei
PDF
导出引用
  • 本文对柱面两极点起爆情况下滑移爆轰波驱动两层金属飞层对碰凸起和微射流形成进行了模拟研究. 铅飞层内界面走时计算结果与实验结果能够较好符合. 在两极位置铅飞层内部出现断裂并形成空腔, 内壁面则形成鼓包型凸起; 在赤道位置飞层内壁面凸起后断裂产生大尺度金属颗粒, 其和微喷射形成的小尺度颗粒叠加构成了对碰区凸起现象. 在铅飞层内表面微喷射现象的研究中发现, 两极附近的微喷物质最大速度逐渐下降, 而对碰区附近的微喷颗粒最大速度反而随时间逐渐增高. 之后, 通过设计沟槽型微喷计算模型, 验证了在两极和赤道上铅飞层内表面产生的初始微喷射最大速度能够由同一均匀缺陷表面所产生. 最后, 通过数值模拟分析研究初步给出了该问题中抑制金属飞层对碰凸起和微喷现象的方法.
    In the cylindrical implosion problem, the phenomenon of colliding bulge and surface micro-jet formation of two-layer metal flyers, which are driven by two slip detonations in opposite direction of the pole, is studied by simulation using Euler's program. Simulation results of the inner surface travel times of the lead flyer coincide well with the experimental results. In the polar position, there is a fracture cavity in the lead flyer, and a blunt bulge is formed on the inner surface. At the equator, large-scale fracture particles are generated as the inner surface of the lead flyer is growing. It is considered that the colliding bulge at the equator which seem to be continuous in the X-ray images is actually discontinuous, and it is composed of large-scale fracture particles and small-scale micro-jet particles. By analysis of the inner surface position on the optical images at different times, the maximum velocity of the lead micro-jet particles is obtained. It is found that the maximum velocity of the micro-jet particles is declined in the pole region, but at the equator its maximum velocity is increased with time. It is considered that the subsequent loading waves on the colliding bulge area may cause higher speed of micro-jet particles than the first loading wave. And then, the groove micro-jet model of the lead, which is loaded by impact, is used to be equivalent to the uniform disfigurement surface micro-jet. It is proved that both the micro-jet maximum velocity in the pole region and the velocity at the equator can be formed by the same uniform disfigurement surface, and the correctness of the experimental optical image is also verified. Finally, the restrained method of the colliding bulge and surface micro-jet in this problem is studied by simulation. The micro-jet maximum velocity of the lead flyer can be declined by changing the two opposite initiation points to the points close to the metal flyers in the pole region, and the main cause of collision bulge at the equator is that the Mach reflection is formed in the collision area because of the low sound velocity of lead.
      通信作者: 刘军, caepcfd@126.com
    • 基金项目: 国家自然科学基金(批准号: 11372052, 11371065, 11371069)、中物院发展基金(批准号: 2015B0201036)和国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号:U1530261)资助的课题.
      Corresponding author: Liu Jun, caepcfd@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11372052, 11371065, 11371069), the Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0201036), and the National Natural Science Foundation of China-Chinese Academy of Engineering Physics Joint Fund(Grant No. U1530261).
    [1]

    Chandle E A, Egan P O, Stokes J 1999 UCRL134657

    [2]

    Zhang C Y, Hu H B, Li Q Z 2009 Chin. J. High Pres. Phys. 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠 2009 高压 23 283]

    [3]

    Zhang C Y, Hu H B, Li Q Z 2013 Chin. J. High Pres. Phys. 27 884 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 884]

    [4]

    Walsh J M, Shreffler R G, Willig F J 1953 J. Appl. Phys. 55 349

    [5]

    Asay J R 1976 SAND76-0542

    [6]

    Asay J R 1978 SAND78-1256,

    [7]

    Asay J R 1978 J. Appl. Phys 49 6173

    [8]

    Andriot P, Chapron P, Lambert V 1984 Shock Waves in Condensed Matter Santa Fe, New Mexico, July 18–21, 1983 p277280

    [9]

    Remiot C, Chapron P, Demay B 1993 High Press. Sci. Tec. 2 1763

    [10]

    Resseguier T, Signor L, Dragon A 2007 J. Appl. Phys 101 013506

    [11]

    Wang P, Shao J L, Qin C S 2009 Act. Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 58 1064]

    [12]

    Liu J, Wang Y J, Feng Q J 2014 Chin. J. High Pres. Phys. 28 346 (in Chinese) [刘军, 王言金, 冯其京 2014 高压 28 346]

    [13]

    Liu J, He C J, Liang X H 2008 Chin. J. High Pres. Phys. 22 72 (in Chinese) [刘军, 何长江, 梁仙红 2008 高压 22 72]

    [14]

    Lee E, Finger M, Collins W 1973 UCID-16189

    [15]

    Steinberg D J 1991 UCRL-MA-106439

    [16]

    Li M S, Chen D Q 2001 Chin. J. High Pres. Phys. 15 24 (in Chinese) [李茂生, 陈栋泉 2001 高压 15 24]

  • [1]

    Chandle E A, Egan P O, Stokes J 1999 UCRL134657

    [2]

    Zhang C Y, Hu H B, Li Q Z 2009 Chin. J. High Pres. Phys. 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠 2009 高压 23 283]

    [3]

    Zhang C Y, Hu H B, Li Q Z 2013 Chin. J. High Pres. Phys. 27 884 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 884]

    [4]

    Walsh J M, Shreffler R G, Willig F J 1953 J. Appl. Phys. 55 349

    [5]

    Asay J R 1976 SAND76-0542

    [6]

    Asay J R 1978 SAND78-1256,

    [7]

    Asay J R 1978 J. Appl. Phys 49 6173

    [8]

    Andriot P, Chapron P, Lambert V 1984 Shock Waves in Condensed Matter Santa Fe, New Mexico, July 18–21, 1983 p277280

    [9]

    Remiot C, Chapron P, Demay B 1993 High Press. Sci. Tec. 2 1763

    [10]

    Resseguier T, Signor L, Dragon A 2007 J. Appl. Phys 101 013506

    [11]

    Wang P, Shao J L, Qin C S 2009 Act. Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 58 1064]

    [12]

    Liu J, Wang Y J, Feng Q J 2014 Chin. J. High Pres. Phys. 28 346 (in Chinese) [刘军, 王言金, 冯其京 2014 高压 28 346]

    [13]

    Liu J, He C J, Liang X H 2008 Chin. J. High Pres. Phys. 22 72 (in Chinese) [刘军, 何长江, 梁仙红 2008 高压 22 72]

    [14]

    Lee E, Finger M, Collins W 1973 UCID-16189

    [15]

    Steinberg D J 1991 UCRL-MA-106439

    [16]

    Li M S, Chen D Q 2001 Chin. J. High Pres. Phys. 15 24 (in Chinese) [李茂生, 陈栋泉 2001 高压 15 24]

  • [1] 郭付周, 陈智辉, 冯光, 王晓伟, 费宏明, 孙非, 杨毅彪. 电介质微球和金属平面纳米层增强荧光远场定向发射.  , 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [2] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断.  , 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [3] 刘军, 王裴, 孙致远, 张凤国, 何安民. 金属微层裂区气体渗入现象的一种近似理论分析.  , 2021, 70(9): 098301. doi: 10.7498/aps.70.20201145
    [4] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [5] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性.  , 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [6] 陈大伟, 王裴, 孙海权, 蔚喜军. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究.  , 2016, 65(2): 024701. doi: 10.7498/aps.65.024701
    [7] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析.  , 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [8] 陈礼诚, 张冬仙, 章海军, 王旭龙琦. 基于微纳结构与金属纳米层的颜色调控技术研究.  , 2015, 64(3): 038102. doi: 10.7498/aps.64.038102
    [9] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析.  , 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [10] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析.  , 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [11] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究.  , 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [12] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响.  , 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [13] 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波.  , 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [14] 陈永涛, 任国武, 汤铁钢, 胡海波. 爆轰加载下金属样品的熔化破碎现象诊断.  , 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [15] 董建军, 曹柱荣, 杨正华, 陈伯伦, 黄天暄, 邓博, 刘慎业, 江少恩, 丁永坤, 伊圣振, 穆宝忠. 辐射驱动内爆流线实验测量.  , 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [16] 董建军, 曹柱荣, 陈伯伦, 黄天暄, 缪文勇, 张继彦, 刘慎业, 江少恩, 丁永坤, 谷渝秋, 单连强. 基于Abel逆变换的辐射驱动内爆壳层密度分布研究.  , 2012, 61(11): 115206. doi: 10.7498/aps.61.115206
    [17] 邵建立, 王裴, 何安民, 秦承森. 冲击诱导金属铝表面微射流现象的微观模拟.  , 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [18] 王裴, 邵建立, 秦承森. 沟槽角度对金属表面微射流性质的影响.  , 2012, 61(23): 234701. doi: 10.7498/aps.61.234701
    [19] 王裴, 邵建立, 秦承森. 加载波前沿宽度对铝表面微射流的影响.  , 2009, 58(2): 1064-1070. doi: 10.7498/aps.58.1064
    [20] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究.  , 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
计量
  • 文章访问数:  6119
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-04
  • 修回日期:  2015-08-04
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map