搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究

陈大伟 王裴 孙海权 蔚喜军

引用本文:
Citation:

爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究

陈大伟, 王裴, 孙海权, 蔚喜军

Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision

Chen Da-Wei, Wang Pei, Sun Hai-Quan, Yu Xi-Jun
PDF
导出引用
  • 强冲击下的物质变形、破坏及诱发的轻重介质混合问题, 是内爆压缩科学和工程应用领域的研究重点. 本文针对爆轰波对碰条件下的复杂加载动力学过程及其动载破坏形态特征, 开展数值模拟研究与极曲线理论分析. 设计了爆轰波对碰驱动平面锡飞层的计算模型, 获得了爆轰加载动力学过程及波系相互作用物理图像, 分析了锡飞层对碰区自由表面速度历史的典型特征. 给出了锡飞层中折射激波对碰发生马赫反射的临界条件, 解读了三波结构的传播行为, 阐明了对碰区内存在一维正冲击区域, 一维区外存在单次斜冲击向两次斜冲击过渡的复杂加载动力学过程, 提出了对碰区冲击动力学模型, 揭示了影响对碰区动载行为特征的机理. 数值模拟结果与极曲线理论分析结果相互印证, 符合较好. 本文的研究成果, 将为深入理解和解读对碰区特殊的物质破坏及混合现象提供重要的理论支撑.
    Under strong impact loading, metal materials will produce deformation and show ejecta behaviors. The mixing phenomenon, due to the detached matters entering into the background fluid, has a direct influence on the compression properties. According to the researches of ejecta, the damage and mixing are closely related with the loading state and the dynamic process. Up to now, many results have already been obtained under the condition of the directive impact of detonation. Further study on the metal materials response driven by detonation collision is needed. Previous studies have focused on the macro characteristics, such as the collision uplift and destruction. In this paper, we aim at the wave system's interaction process, in order to obtain the physical detail and to reveal the mechanisms of dynamic behaviors in the collision region. Investigations are carried out by means of both the numerical simulation and the shock polar theory analysis. Planer tin flying layer calculation model is designed for numerical simulation, so the sliding wave systems and shock conditions are obtained effectively. Based on the numerical results in the plane tin flying layer, the shock polar theory forecasts that the Mach reflection will occur, and the images of wave interactions given by numerical simulation also display the three-wave structure, which is the typical structure of the Mach reflection. Quantitative comparisons between the numerical results and theoretical analysis of the shock polar are in good agreement with each other. Furthermore, the critical conditions of Mach reflection in the cases of different shock conditions are given. Meanwhile typical characteristics of the histories of free surface velocity in the collision zone are analyzed. From the numerical and theoretical analyses, the shock dynamical model in the collision zone is proposed to reveal the mechanisms, and the model is very important for investigating the collision zone problem deeply in decomposition way. The results illustrate that in the collision zone there exist multiple kinds of shock loading ways, including one-dimensional once plane impact region, two-dimensional once oblique impact region, and two-dimensional twice oblique impacts region. The complex loading dynamic processes coupling with the unsteady flow field lead to the distributions of the peak pressure at different positions in the collision zone. The corresponding destroyed behaviors are shown, and thus we can establish the relationship between the reflection wave structure and the fracture morphology of the collision zone. This research results will provide an important theoretical support for the understanding and interpretation of the physical phenomena of material deformation, damage and mixing in the collision zone.
      通信作者: 王裴, wangpei@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1530261, 11571002, 11371069)和中国工程物理研究院科学基金(批准号: 2015B0101021, 2013A0201010, 2015B0201043)资助的课题.
      Corresponding author: Wang Pei, wangpei@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261, 11571002, 11371069), and the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101021, 2013A0201010, 2015B0201043).
    [1]

    Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349

    [2]

    Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127

    [3]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [4]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [5]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [6]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D

    [7]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 61 184701]

    [8]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [9]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [10]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177

    [11]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压 23 283]

    [12]

    Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939

    [13]

    Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]

    [14]

    Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 885]

    [15]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [16]

    Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]

    [17]

    Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 64 114702]

    [18]

    Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]

    [19]

    Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]

    [20]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

  • [1]

    Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349

    [2]

    Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127

    [3]

    Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]

    [4]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [5]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [6]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D

    [7]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 61 184701]

    [8]

    Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [9]

    Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]

    [10]

    Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177

    [11]

    Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压 23 283]

    [12]

    Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939

    [13]

    Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]

    [14]

    Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 885]

    [15]

    Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]

    [16]

    Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]

    [17]

    Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 64 114702]

    [18]

    Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]

    [19]

    Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]

    [20]

    Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]

  • [1] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟.  , 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [2] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析.  , 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [3] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析.  , 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [4] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [5] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [6] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [7] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究.  , 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [8] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟.  , 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [9] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [10] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究.  , 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [11] 周前红, 郭文康, 李辉. 保护气对切割弧特性影响的模拟研究.  , 2011, 60(2): 025214. doi: 10.7498/aps.60.025214
    [12] 张运炎, 范广涵, 章勇, 郑树文. 掺杂GaN间隔层对双波长发光二极管光谱调控作用的研究.  , 2011, 60(2): 028503. doi: 10.7498/aps.60.028503
    [13] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究.  , 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [14] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [15] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟.  , 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [16] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析.  , 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [18] 宋男男, 吴士平, 栾义坤, 康秀红, 李殿中. 卧式离心铸造过程数值模拟与水力学试验研究.  , 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [19] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟.  , 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [20] 张 霆, 丁伯江. 原子过程对极向CXRS测量影响的数值模拟.  , 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
计量
  • 文章访问数:  6441
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-04
  • 修回日期:  2015-09-18
  • 刊出日期:  2016-01-20

/

返回文章
返回
Baidu
map