搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受碾区域内颗粒轴向流动特性的离散元模拟

韩燕龙 贾富国 曾勇 王爱芳

引用本文:
Citation:

受碾区域内颗粒轴向流动特性的离散元模拟

韩燕龙, 贾富国, 曾勇, 王爱芳

Granular axial flow characteristics in a grinding area studied by discrete element method

Han Yan-Long, Jia Fu-Guo, Zeng Yong, Wang Ai-Fang
PDF
导出引用
  • 为探讨受碾状态颗粒的稳定流动, 在碾辊轴与筛筒组成的受碾区域内, 建立了轴向运动的颗粒流离散元物理模型. 研究结果表明: 受碾区域内各颗粒沿轴向运动能力的差异造成了颗粒流密度不均匀; 颗粒与筛筒间的静摩擦系数影响颗粒轴向流动的形态、速率及集散程度, 受碾区域内单层颗粒的轴向均方偏差与流动时间的平方正相关, 属于“super”扩散; 整体分析受碾区域发现, 颗粒的轴向平均速度沿轴向坐标逐渐增大, 而颗粒的三轴合成平均速度沿轴向坐标逐渐降低; 受碾区域内各轴向位置处颗粒运动的剧烈程度不同, 沿轴向坐标颗粒的波动速度平方呈现先增大后降低而后又增大的趋势; 单颗粒的碰撞总能量损失能谱也表明了颗粒运动程度不同, 即轴向流动时在受碾区域的前半段碰撞剧烈, 能量损失多, 在后半段碰撞程度弱, 能量损失较少. 通过对受碾区域内颗粒流动的数值模拟分析, 明晰了颗粒在受碾条件下稳定流动特性, 有益于碾磨工业对产品品质控制及设备参数优化的研究.
    Granular grinding is one of the most important unit operations used in a wide variety of industries. Examples can be found in the food industry, for instance, rice processing, etc.. The performance of grinding can be characterized by the particle flow process. Thus in order to study the stable flow process of particles during grinding, we must establish a discrete element model (DEM) of granular axial flow in the grinding area between the grinding roller and the screen drum. DEM is a numerical method used for modelling the mechanical behaviour of granular materials. When DEM is used in grinding, the particle motion is controlled by contact models that are governed by physical laws. Using EDEM software, the process of grinding can be simulated and analyzed. The simulation system chooses continuous feeding; after a period of time, it reaches a steady flow. Research results show that the uneven distribution of particle flow density (PFD) is caused by the axial movement difference of particles in the grinding area. The form, flow rate and distribution of granular axial flow are influenced by static friction coefficient difference between particles and screen drum. Axial mean square deviation of single particles in the grinding area is positively correlated with the square of time, which follows a “super” diffusive behavior defined by some studies. By an overall consideration of the grinding area, we find that the axial average velocities increase, however, the average velocities that are synthesized by three-axis velocities gradually decrease along the axial direction. This is because in a different axial position with different PFI, the PFI plays the key role in energy transfer. More energy will be transferred between high PFI particles that may cause high particle velocity. We also find that the fluctuation velocity square of particles presents the trend of first increasing then decreasing and finally increasing along the axial direction. The difference between PFIs is also elucidated by the total energy dissipation in each collisional energy level for a single particle. Results show that the single particle can endure intenser collision, more energy loss in anterior half segment than those in the second half of the grinding area. As mentioned above, the particle flow was analyzed in terms of particle flow intensity, particle velocity, collision energy, collision number, and so on. Some experimental results confirm the validity of the simulation. The simulation reflects the stable flow characteristics of particles in the grinding area and provides bases and references for further studying the product quality control and grinding equipment parameters optimization.
      通信作者: 贾富国, jfg204@163.com
    • 基金项目: 黑龙江省自然科学基金(批准号: E201322)、哈尔滨市优秀学科带头人基金(RC2013XK006004)和哈尔滨市应用技术研究与开发项目(2013DB2BG005)资助的课题.
      Corresponding author: Jia Fu-Guo, jfg204@163.com
    • Funds: Project supported by the National Science Foundation of Heilongjiang Province, China (Grant No. E201322), the Harbin Foundation for Outstanding Academic Leaders, China (Grant No. RC2013XK006004), and the Application Technology Research and Development Project of Harbin, China (Grant No. 2013DB2BG005).
    [1]

    Sun Q C, Wang G Q 2008 Adv. Mech. 38 87 (in Chinese) [孙其诚, 王光谦 2008 力学进展 38 87]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 江茂强, 郑津洋 2009 58 1812]

    [3]

    Tahvildarian P, Mozaffari F E, Upreti S 2013 Particuology 11 619

    [4]

    Sinnott M D, Cleary P W 2015 Miner. Eng. 74 163

    [5]

    Wang M H, Yang R Y, Yu A B 2012 Powder Technol. 223 83

    [6]

    Pasha M, Hassanpour A, Ahmadian H, Tan H S, Bayly A, Ghadiri M 2015 Powder Technol. 270 569

    [7]

    Ma Z, Li Y M, Xu L Z 2013 Trans. CSAM. 44 22 (in Chinese) [马征, 李耀明, 徐立章 2013 农业机械学报 44 22]

    [8]

    Jayasundara C T, Yang R Y, Yu A B, Rubenstein J 2010 Int. J. Miner. Process. 96 27

    [9]

    Cleary P W 2006 Appl. Math. Model. 30 1343

    [10]

    Cunha E R D, Carvalho R M D, Tavares L M 2013 Miner. Eng. 43 85

    [11]

    Morrison R D, Cleary P W, sinnott M D 2009 Miner. Eng. 22 665

    [12]

    Lu G, Third J R, Muller C R 2014 Particuology 12 44

    [13]

    Parker D J, Djkstra A E, Martin T W, Seville J P K 1997 Chem. Eng. Sci. 52 2011

    [14]

    Third J R, Scott D M, Scott S A 2010 Powder Technol. 203 510

    [15]

    Zhu Y Y 1999 Rice Processing and Comprehensive Utilization(Beijing:China Light Industry Press) p149 (in Chinese) [朱永义 1999 稻谷加工与综合利用(北京: 中国轻工业出版社)第149页]

    [16]

    Hu J P, Guo K, Zhou C J, Hou C 2014 Trans. CSAM. 45 61 (in Chinese) [胡建平, 郭坤, 周春健, 侯冲 2014 农业机械学报 45 61]

    [17]

    Chen J, Zhou H, Zhao Z, Li Y M, Gong Z Q 2011 Trans. CSAM. 42 79 (in Chinese) [陈进, 周韩, 赵湛, 李耀明, 龚智强 2011 农业机械学报 42 79]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 63 174501]

    [19]

    Zhou X Q 2011 Rice Processing Technology and Equipment(Beijing:China Light Industry Press) p163 (in Chinese) [周显青 2011 稻谷加工工艺与设备(北京: 中国轻工业出版社)第163页]

    [20]

    Khanal M, Jayasundara C T 2014 Particuology 16 54

    [21]

    Jayasundara C T, Yang R Y, Yu A B, Curry D 2008 Chem. Eng. J. 135 103

    [22]

    Yang R Y, Yu A B, Mcelroy L, Bao J 2008 Powder Technol. 188 170

    [23]

    Yang R Y, Jayasundara C T, Yu A B, Curry D 2006 Miner. Eng. 19 984

    [24]

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 134502 (in Chinese) [孟凡净, 刘焜 2014 63 134502]

  • [1]

    Sun Q C, Wang G Q 2008 Adv. Mech. 38 87 (in Chinese) [孙其诚, 王光谦 2008 力学进展 38 87]

    [2]

    Zhao Y Z, Jiang M Q, Zheng J Y 2009 Acta Phys. Sin. 58 1812 (in Chinese) [赵永志, 江茂强, 郑津洋 2009 58 1812]

    [3]

    Tahvildarian P, Mozaffari F E, Upreti S 2013 Particuology 11 619

    [4]

    Sinnott M D, Cleary P W 2015 Miner. Eng. 74 163

    [5]

    Wang M H, Yang R Y, Yu A B 2012 Powder Technol. 223 83

    [6]

    Pasha M, Hassanpour A, Ahmadian H, Tan H S, Bayly A, Ghadiri M 2015 Powder Technol. 270 569

    [7]

    Ma Z, Li Y M, Xu L Z 2013 Trans. CSAM. 44 22 (in Chinese) [马征, 李耀明, 徐立章 2013 农业机械学报 44 22]

    [8]

    Jayasundara C T, Yang R Y, Yu A B, Rubenstein J 2010 Int. J. Miner. Process. 96 27

    [9]

    Cleary P W 2006 Appl. Math. Model. 30 1343

    [10]

    Cunha E R D, Carvalho R M D, Tavares L M 2013 Miner. Eng. 43 85

    [11]

    Morrison R D, Cleary P W, sinnott M D 2009 Miner. Eng. 22 665

    [12]

    Lu G, Third J R, Muller C R 2014 Particuology 12 44

    [13]

    Parker D J, Djkstra A E, Martin T W, Seville J P K 1997 Chem. Eng. Sci. 52 2011

    [14]

    Third J R, Scott D M, Scott S A 2010 Powder Technol. 203 510

    [15]

    Zhu Y Y 1999 Rice Processing and Comprehensive Utilization(Beijing:China Light Industry Press) p149 (in Chinese) [朱永义 1999 稻谷加工与综合利用(北京: 中国轻工业出版社)第149页]

    [16]

    Hu J P, Guo K, Zhou C J, Hou C 2014 Trans. CSAM. 45 61 (in Chinese) [胡建平, 郭坤, 周春健, 侯冲 2014 农业机械学报 45 61]

    [17]

    Chen J, Zhou H, Zhao Z, Li Y M, Gong Z Q 2011 Trans. CSAM. 42 79 (in Chinese) [陈进, 周韩, 赵湛, 李耀明, 龚智强 2011 农业机械学报 42 79]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 63 174501]

    [19]

    Zhou X Q 2011 Rice Processing Technology and Equipment(Beijing:China Light Industry Press) p163 (in Chinese) [周显青 2011 稻谷加工工艺与设备(北京: 中国轻工业出版社)第163页]

    [20]

    Khanal M, Jayasundara C T 2014 Particuology 16 54

    [21]

    Jayasundara C T, Yang R Y, Yu A B, Curry D 2008 Chem. Eng. J. 135 103

    [22]

    Yang R Y, Yu A B, Mcelroy L, Bao J 2008 Powder Technol. 188 170

    [23]

    Yang R Y, Jayasundara C T, Yu A B, Curry D 2006 Miner. Eng. 19 984

    [24]

    Meng F J, Liu K 2014 Acta Phys. Sin. 63 134502 (in Chinese) [孟凡净, 刘焜 2014 63 134502]

  • [1] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究.  , 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟.  , 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [3] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析.  , 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [4] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析.  , 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [5] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢. 玻璃-橡胶混合颗粒体系的弹性行为研究.  , 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [6] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟.  , 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [7] 严大东, 张兴华. 聚合物结晶理论进展.  , 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [8] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究.  , 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [9] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [10] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响.  , 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [11] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象.  , 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [12] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟.  , 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [13] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [14] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [15] 彭光含, 孙棣华, 何恒攀. 交通流双车跟驰模型与数值仿真.  , 2008, 57(12): 7541-7546. doi: 10.7498/aps.57.7541
    [16] 封 伟, 高中扩. 有机光伏电池物理性能的模拟.  , 2008, 57(4): 2567-2573. doi: 10.7498/aps.57.2567
    [17] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [18] 来国军, 刘濮鲲. W波段回旋行波管放大器的模拟与设计.  , 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [19] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟.  , 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [20] 王培林, 丁天骅, 蔡珣. 超薄晶体膜生长过程的计算机模拟.  , 2002, 51(9): 2109-2112. doi: 10.7498/aps.51.2109
计量
  • 文章访问数:  6175
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-08-03
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map