搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金衬底调控单层二硫化钼电子性能的第一性原理研究

张理勇 方粮 彭向阳

引用本文:
Citation:

金衬底调控单层二硫化钼电子性能的第一性原理研究

张理勇, 方粮, 彭向阳

Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study

Zhang Li-Yong, Fang Liang, Peng Xiang-Yang
PDF
导出引用
  • 基于密度泛函的第一性原理研究了金衬底对单层二硫化钼电子性能的调控作用. 从结合能、能带结构、电子态密度和差分电荷密度四个方面进行了深入研究. 结合能计算确定了硫原子层在界面的排布方式, 并指出这种吸附结构并不稳定. 能带结构分析证实了金衬底与单层二硫化钼形成肖特基接触, 并出现钉扎效应. 电子态密度分析表明金衬底并没有影响硫原子和钼原子之间的共价键, 而是通过调控单层二硫化钼的电子态密度增加其导电率. 差分电荷密度分析表明单层二硫化钼的导电通道可能在界面处产生. 研究结果可对单层二硫化钼晶体管的建模和实验制备提供指导.
    Using first principles calculations within density functional theory, we investigate the electronic property of a single-layer MoS2 adsorbed on Au. All the quantities are calculated using the Vienna ab initio simulation package. Calculations are performed using the projector augmented wave method with the Perdew-Burke-Ernzerhof functional and a kinetic energy cutoff of 400 eV. The atomic plane and its neighboring image are separated by a 15 Å vacuum layer. The k-meshes for the structure relaxation and post analysis are 9×9×1 and 19×19×1, respectively. The spin-orbit coupling is considered in the calculation. The research includes the binding energy, the band structure, density of states (DOS) and electric charge difference density. Three contact modes between MoS2 (0001) and Au (111) are considered. When the atom S layer and the atom Au layer on the contacting interface have the same structure, the minimum binding energy and distance between MoS2 (0001) and Au(111) are 2.2 eV and 2.5 Å respectively. The minimum binding energy confirms that the absorption is unstable. The band structure demonstrates that the MoS2-Au contact nature is of the Schottky-barrier type, and the barrier height is 0.6 eV which is bigger than MoS2-Sc contact. By comparison with other metal contacts such as Ru(0001), Pd(111) and Ir(111), the dependence of the barrier height on the work function difference exhibits a Fermi-level pinning. But the MoS2 is so thin that the Fermi-level pinning must be very small. Maybe there is a metal induced gap state. DOS points out that the Au substrate has no influence on the covalent bond between Mo and S. The influence of the Au substrate is that it shifts the DOS of monolayer MoS2 left on the axis. The change of DOS results in the increases of electron concentration and electric conductivity. Other calculation points out that Ti substrate can excite more electrons. Electric charge density difference demonstrates that there are a few electric charges that transfer on the contact interface. The conducting path of monolayer MoS2 may emerge at the interface between Au and MoS2. In summary, the Au electrode is not the best electrode in the MoS2 device. The Ti electrode can excite more electrons from MoS2. The work function of Sc electrode is close to the affine of MoS2. The Fermi energy level of graphene can be tuned by external voltage. So the Ti, Sc and graphene will be the better electrodes for MoS2 device. Results of this study may provide a theoretical basis for single-layer MoS2 transistor and guidance for its applications.
      通信作者: 方粮, lfang@nudt.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 61332003)资助的课题.
      Corresponding author: Fang Liang, lfang@nudt.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61332003).
    [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372

    [3]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [6]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213

    [7]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [8]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470

    [9]

    Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [11]

    Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [13]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [14]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [15]

    Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635

    [16]

    Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853

    [17]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104

    [18]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100

    [19]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [20]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [21]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [22]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [26]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]

    [27]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [28]

    Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509

    [29]

    Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802

    [30]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

  • [1]

    Ahn H S, Kim J M, Park C, Jang J W, Lee J S, Kim H, Kaviany M, Kim M H 2013 Sci. Rep. 3 1960

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 35 372

    [3]

    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 82 1102

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kalantar Z K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [6]

    Kuc A, Zibouche N, Heine T 2011 Phys. Rev. Lett. 83 245213

    [7]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [8]

    Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470

    [9]

    Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X, Jia Y 2015 Chin. Phys. B 24 026501

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102(in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 61 227102]

    [11]

    Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q, Li J B 2012 Phys. Lett. A 376 1166

    [12]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102(in Chinese) [曹娟, 崔磊, 潘靖 2013 62 187102]

    [13]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [14]

    Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [15]

    Late D J, Liu B, Matte H H S S R, Dravid V P, Rao C N R 2012 ACS Nano 66 5635

    [16]

    Kiriya D, Tosun M, Zhao P D, Kang J S, Javey A 2014 J. Am. Chem. Soc. 136 7853

    [17]

    Bao W Z, Cai X H, Kim D, Sridhara K, Fuhrer M S 2013 Appl. Phys. Lett. 102 042104

    [18]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2012 Nano Lett. 13 100

    [19]

    Li Y F, Zhou Z, Zhang S B, Chen Z F 2008 J. Am. Chem. Soc. 130 16739

    [20]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269

    [21]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [22]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Chem. Mater. 26 5625

    [23]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [24]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J F 1979 Phys. Rev. B 13 5188

    [26]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101(in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 63 117101]

    [27]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [28]

    Chen W, Santos E J G, Zhu W G, Kaxiras E, Zhang Z Y 2013 Nano Lett. 13 509

    [29]

    Igor P, Gotthard S, David T 2012 Phys. Rev. Lett. 108 156802

    [30]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管.  , 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] 周嘉健, 张宇文, 何朝宇, 欧阳滔, 李金, 唐超. 二维SiP2同素异构体结构预测及其电子性质的第一性原理研究.  , 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展.  , 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响.  , 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [5] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究.  , 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [6] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [7] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质.  , 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [9] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究.  , 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究.  , 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟.  , 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] 雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇. La, Ce, Nd掺杂对单层MoS2电子结构的影响.  , 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算.  , 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [16] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [17] 董海明. 低温下二硫化钼电子迁移率研究.  , 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [19] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究.  , 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  7143
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 修回日期:  2015-05-16
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map